
 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Preface
About the Author

Part I—Introduction to Java Database Programming

Chapter 1—About Java

Typical Uses
The Future

Java Technology
Java Applications

Summary

Chapter 2—Database Fundamentals

Relational Databases
Software Architectures
Database Standards

SQL
SAG-X/Open CLI

An Industry Standard: ODBC
ODBC Components

Summary

Chapter 3—Database Integration With JDBC

The Role of JDBC
JDBC Characteristics
JDBC Components

Integration Issues
Internet or Intranet?

The “Business Logic” of an Application
Other Solutions

The CGI Approach
Java Wrapper Classes

Using JDBC with an ODBMS
Using an Object/Relational DBMS Bridge
Summary

Part II—Exploring JDBC

Chapter 4—Getting Started With JDBC

The JDBC Mechanisms
The JDBC Interfaces
Typical Use

Applications and Applets
ODBC Versus Specific Drivers as Subprotocol
Summary

Chapter 5—Database Connectivity, Step by Step

First Steps
Database Connection

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

JDBC’s Database Naming
JDBC Drivers
Adjusting Properties
Sending SQL Statements

What We Have Done So Far
Example

Handling Results
Fetchable Result Types
Error and Warning Management

Summary

Chapter 6—Fine Tuning JDBC Queries and Updates

Driver and DriverManager Internals
SQL Data Type Conversions

Mapping Data Types to Java
Type Mapping Tables

SQL Escape Syntax
Escape Syntax

Transaction Management
Transaction Modes
Transaction Isolation Levels
Managing Transactions with JDBC

Cursors
Operation Theory
Practical Examples

Summary

Chapter 7—Advanced Techniques

Callable Statements
Setting Parameters
Accessing Parameters
Example

Dynamic SQL
Passing IN Parameters
Executing the Query and Retrieving Results
Dealing with BLOBs

Metadata Interfaces
Information on Database Objects
The DatabaseMetaData Interface
Miscellaneous Database Information
Features Supported
Various Database Limitations

The ResultSetMetaData Interface
Information on ResultSet Columns
Column Properties

Dynamic Data Access
Dynamically Typed Data Retrieval
Dynamically Typed Data Insertion/Update

Multithreading
Summary

Chapter 8—The Three-Tier Approach for Using Distributed Objects

Object Persistency

Java Remote Method Invocation
Other Techniques

Summary

Chapter 9—Design Issues

Intranet/Internet
The Number of Simultaneous Users

Replication
Latency
Security Issues

One Hundred Percent Database Independent
One Hundred Percent Java or Non-100 Percent Java
Choosing a DBMS
Summary

Part III—Working Examples

Chapter 10—Examples

Handling Normal Rows
Simple ISQL Client Application

Simple ISQL Client Applet
Snapshot of the Applet
Applet: JDBC Airlines

Handling Multimedia Content
Sending BLOBS
Retrieving BLOBS

Dealing with Database Transactions
The Bank of Java

Dynamic Database Access
A Java Database Explorer
The Screens

Multitier Architectures
Remote Method Invocation and JDBC

Summary

Quick Reference
Appendix A
Appendix B
Appendix C
Appendix D
Index

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Table of Contents

Preface

Welcome to the IDG professional series and to JDBC™: Java™ Database Connectivity! This book will help Java
developers optimize their efforts with an integrated approach to database access. Java is a powerful general-purpose
programming language that combines the qualities of many other modern languages. Many developers consider Java an
invaluable programming tool because of its platform independence — probably the most important of Java’s many
interesting features. Java is more than a programming language, however. It has its own environment — the Java
Environment — that makes this object-oriented language robust, secure, architecture-neutral and portable, and also
dynamic and threaded. Furthermore, Java is small and can be distributed on networks. Extensions such as portable
graphic libraries, portable networking, and I/O capabilities empower the language and make it unique.

Like many other languages, Java may be used to develop components of client/server environments. The client/server
paradigm proved its suitability for various purposes and is still evolving today. Actually, the most-used client/server
architecture involves relational database servers and light (or not-so-light) clients running on desktops, so this book will
obviously focus on connectivity with databases. In fact, Sun engineers developed a set of standard Java classes to allow
database queries and updates to be issued from Java. This set of classes, called the Java Database Connectivity classes, is
better known under the name of the JDBC Package. It is a part of Java Enterprise, a set of features that will mostly be
used in various enterprise-wide projects. Once you master developing platform-independent programs with Java, you
will then discover how to develop projects that access corporate or customers’ data mines in a DBMS-independent way.

In fact, many applications are now tightly linked to databases, especially in the business world. From employee records
to financial data, from library catalogs to student scores, a robust data management system must include:

• Access protection
• Data integrity and consistency
• Concurrency management
• Availability
• Scalability

All professional database management systems have such qualities. They even offer transaction management and
relational access to data, replication, mirroring, and live backup facilities. These databases are well suited for all kinds of
real-world data repositories, and they are often used in mission-critical environments such as process control, medical
record tracking, or financial data warehouses.

Whatever kind of data relational databases store, there is one common language to query these: Structured Query
Language (SQL). Its main purpose is to allow the database user to store and retrieve his or her data seamlessly, whatever
the data source, while taking part of strong relations being set between data structures. It is also independent of the host
language in which it is embedded. SQL has been standardized in 1986, 1989, and 1992. The most recent specification is
called SQL-92 and is still evolving. Since it is an industry standard, it will be the language used to query databases
through the JDBC. Be they applets, servlets, or applications, your next Java projects will be able to communicate to
Database Management Systems using a universal and widespread language. You will, however, have to know the basics
of SQL to understand fully the book’s examples. The book will focus on the mechanisms used to integrate Java projects
with DBMSs and not on SQL.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

Because Java and its environment are powerful enabling technologies, we believe an extra component such as JDBC will
be widely accepted and used by the developer community. It is robust, simple, perfectly designed, and enables all of
today’s Java applets, servlets, or applications to interact with databases. On the Internet battlefield, JDBC will push Java
a little more because it is tremendously more powerful than the usual solutions to access databases from World Wide
Web pages.

Who Is This Book For?

The audience for this book covers database developers that need to port applications or create new applications for the
Internet or an intranet using World Wide Web and Java techniques. Obviously, this book is also intended for
Webmasters, Web designers, and content developers who want to take advantage of the possibilities of Java. The third
category of readers covers all Java developers wanting to learn client/server programming with databases in a very
simple, easy, yet very powerful way using the standard JDBC API.

What You Need Before You Begin

The reader should have a minimum knowledge of Java programming. If you are working with a specific DBMS such as
Oracle, Sybase, Informix, or DB2, you should understand the administration of such databases (to create new user
accounts, for example). Smaller databases for desktop computers will also work with JDBC, although the possibilities
will be far more limited. Knowledge of SQL is preferred, although it is introduced and illustrated by many examples in
the book.

What’s in This Book

This book is divided into four parts:

• Part I: Introduction to Java Database Programming — Part I introduces Java, database architectures and
standards, and explains the Java Database Connectivity Classes.
• Part II: Exploring JDBC — Part II teaches you JDBC step-by-step, with plenty of code listings throughout
the chapters. Part II also covers the three-tier approach, security issues, and Internet/intranet topics.
• Part III: Working Examples — Part III includes comprehensive examples of JDBC, including the code
samples both in the book and on the CD-ROM.
• Quick Reference Guide, Appendixes, and CD-ROM — The Quick Reference Guide covers the JDBC 1.2
API of JavaSoft, and the appendixes include answers to frequently asked questions and references for additional
information about SQL and DBMSs and Objects and DBMSs and JDBC products and drivers. The CD-ROM
contains the source code for all examples, JDBC products, Bongo 1.0 from Marimba, and the common Java
utilities such as the JavaSoft, Inc., JDK. See Appendix D, “What’s on the CD-ROM,” for a detailed list of CD-
ROM contents.

We hope the theory and examples explained in this book will convince you there is now a real alternative to World Wide
Web common gateway interfaces and that you can work successfully with Java without being a Java guru. We hope you
will be convinced of the tremendous benefits Java offers via its robustness, security, object orientation and platform
independence, and universal database connectivity.

Table of Contents

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Table of Contents

To Laura

About the Author

Bernard Van Haecke is a consultant at Sun Microsystems Professional Services. He specializes in systems and network
integration projects, most particularly DBMS, UNIX, and cutting-edge Java issues.

Acknowledgments

Among the many individuals who helped with this project, I first want to thank very sincerely those who played an
instrumental role both before and during the writing. Thank you to Laura Sanderson, Christophe Peerens, Wim De
Munck, many former UCL colleagues and more recent Sun Microsystems colleagues, and of course my family.

I also want to thank Peter Ham and Gionata Mettifogo of Connect, Inc., for providing one of the most interesting
examples in this book; Klaas Waslander of Marimba, Inc., for many informative discussions regarding the advanced
examples; and to all of the reviewers who contributed from the beginning.

Special thanks go to Laurence Vanhelsuwé, who played a key role in locating the right editor for this book and for
submitting a perfect proposal to him. Special thanks, too, go to John Read, Acquisitions Editor at IDG Books
Worldwide, and to all of the editors who turned the manuscript into a terrific published book. They deserve much credit
for their work. I am infinitely grateful to them.

Table of Contents

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Part I
Introduction to Java Database Programming

Chapter 1: About Java

Chapter 2: Database Fundamentals

Chapter 3: Database

Part I presents general background information about Java. You’ll learn about typical applications related to Java and
JDBC and why Java is so hot for client/server application development. You’ll then review some database fundamentals,
including relational ones, the standards such as SQL, X/Open CLI, and ODBC, and client/server architectures involving
DBMSs.

Finally, you’ll learn how to integrate today’s databases using various approaches, as well as with the state-of-the-art Java
and JDBC.

Chapter 1
About Java

In This Chapter

Java is a new programming language especially well suited for the Internet. It offers many built-in features in its run
time environment. From TCP-IP (Transmission Control Protocol/Internet Protocol) socket networking to method
invocation on remote objects, from portable code and graphic toolkit to universal database connectivity, Java embraces
many of the the technologies ever invented in the open-systems computing industry. This chapter covers:

• Java’s philosophy
• Typical uses of Java
• Java’s being more than a natural evolution

Java and its environment were introduced in 1995 by Sun Microsystems, Inc. Java was designed to meet the challenges
of development in incompatible but networked environments.

Most modern programming languages already have some of the features present in Java, but none have all of the
features. A majority of developers, analysts, designers, administrators, and executives agree that Java is the “enabler” of
the 1990s. Much of the early discussion on the need for a Java-like language happened in Usenet newsgroups on the
Internet. Now every major player endorses the technology and plans to deliver Java programs or javatized hardware. The
reason is simple — Java’s features. Most of the features of Java and its environment are revealed in the next paragraphs;
however, Table 1-1 summarizes Java’s feature set.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

Table 1-1JAVA —THE BIG PICTURE

Java C C++

Simple J K L

Object-oriented J L K

Robust J L L

Secure J L L

Interpreted J L L

Dynamic J L L

Portable J K K

Neutral J L L

Threads J L L

Garbage collection J L L

Exception J L K

J Fulfilled by the language

K Not built in the language, but feasible

L Not feasible in this language without third-party libraries

First and foremost, Java is definitely object-oriented. It is somewhat similar to C++, but its programming supplants
functional and procedural styles. Java programmers only manipulate objects, data members, accessors, and mutators.
Extra features such as automatic garbage collection (a garbage collector keeps track of the object instances and frees
them when no longer used), object references replacing arithmetic address pointers, and native or nonnative
multithreading add to Java’s simplicity and power.

Java is a true object-oriented programming language. It fully supports encapsulation, polymorphism, inheritance, and
dynamic bindings. The main benefit for the programmer is that his or her programming model will be close to the real
world objects, making them easier to implement. Software reuse also benefits from this orientation, as is the case, for
example, with many well-known C++ libraries.

Java is architecture-neutral, portable, and robust in that it can run on various platforms, anywhere on a network,
regardless of which graphic subsystem is in use. It is truly independent of hardware, operating systems, and GUIs. The
design of the Java Virtual Machine and Java’s Abstract Window Toolkit make it portable, much more portable than C or
C++, greatly simplifying deployment issues. This is why Java has such presence on the Internet. While Java applications
are stand-alone programs, “applets” are pieces of software that can be downloaded from the Internet or intranet and run
inside a World Wide Web (WWW) browser like HotJava. “Servlets” are also pieces of software that run as extensions to
WWW servers while “aglets” are software agents that live and persist in networks, moving from host to host to perform
dedicated tasks.

Java is an interpreted language whose bytecodes run within a secure virtual machine that translates the bytecodes to
native CPU instructions. In some cases, this bytecode is compiled “just in time” and cached, or even “flash-compiled” so
no additional interpretation is needed. It is also very dynamic. Java application classes may be downloaded across
networks automatically.

Before passing to the interpreter for execution, bytecodes are verified. Bytecode verification ensures that the code does
not point where it cannot point, that it does not violate access and network restrictions, and that it correctly accesses
objects. Security is a very important intranet and Internet issue, which is why it is addressed at many levels of the Java
environment.

Java provides an exception mechanism to create and catch user program errors and to catch system errors. This
mechanism is superior to the usual way of trapping errors — using and testing return codes everywhere in the programs.
It also adds to the code’s simplicity and readability, which decreases the risk of introducing errors into programs.

Finally, Java features multithreading in a manner that is mostly independent of the underlying operating system from a
programmer’s point-of-view. Threads allow client-server applications to perform multiple tasks, including animations,
concurrently.

Typical Uses

Many computer enthusiasts once said Java was well suited for animating World Wide Web pages. Actually, its use
within WWW pages, mostly in the form of Java applets, is more a consequence of its design than its ultimate goal. Java
is a very complete language, and there are no limitations that make it unsuitable for corporate and enterprisewide
professional and business applications. On the other hand, both Sun and other parties are continuously enhancing the
Java environment. These enhancements always preserve investments so there is no reason to wait before developing
your next greatest corporate application in Java.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Virtually any application can be developed using Java, including those that need to issue calls to “system services” such
as TCP/IP sockets. Many Integrated Development Environments (IDE) or Rapid Application Development tools (RAD
tools) are being announced and released. These tools are often called Java Development Environments (JDE). If you are
looking for such products, browse the Usenet newsgroup news://comp.lang.java. Many netizens will be happy to help
you locate the best products. You also will have the opportunity to read and post comments to the support people from
the companies that develop such programming environments. It has never been easier to get help to make choices before
purchasing a development tool.

The Future

The possibilities Java offers are limitless. In the near future, many astonishing applications will appear. You’ll soon see,
for example, portable network management tools, interactive communication tools using multimedia techniques,
interactive education tools, and information booths. But Java already has impacted operating systems. Many leading
industry vendors already endorse the Java technology and include it in their existing platforms. Java made an important
impact on the hardware industry, too. Java chips have been announced. They will be used in home appliances and
industrial equipment. Many companies have agreed on common network computer specifications. These network
computers will have operating systems and operating environments written in Java. Among the main benefits of all these
new devices, the most impressive are the low cost and the possibility of on-demand downloading from the network of
new versions of the operating elements, for both systems and applications.

Java Technology

Java technology evolves quickly. A Java Electronic Commerce Framework (JEFC), distributable Java components
(JavaBeans), and Java/COM (Microsoft’s Compound Object Model) integration are under development. The Java
Database Connectivity API (Application Programming Interface), Java Object Serialization, and Java Remote Method
Invocation are already available.

Concerning JDBC (Java Database Connectivity), JavaSoft (Sun Microsystems) and partners have plans for a Java Object-
Relational Mapping API and for a Java Transaction Service API. The ODMG (Object Database Management Group) has
been working on a standard API for Java object databases. This standard will be finalized by the time you read this book.

Java Applications

Certain Java applications are worth mentioning. Both the Java-enabled Transaction Processing Monitor and the Java
CASE Tool are of interest for the database developer going the Java way.

Example: Transaction Processing Monitor

One of the most interesting available products is a Transaction Processing (TP) monitor that works with Java clients. A
client/server environment can include a TP monitor when the servers are Database Management System server. It solves
the problems that arise when hundreds, or even thousands, of clients send requests to a database server at the same time.
The product is Vortex Java Edition, from Trifox, Inc.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
file:///D|/eBook/%EC%95%95%EC%B6%95%EB%90%9C%20%EC%B1%85/JDBC-Java%20Database%20Connectivity/JDBC-Java%20Database%20Connectivity/ch01/news�/comp.lang.java

Transaction processing monitors have existed for a long time. They were available for every mainframe environment.
When the X/Open XTP Group’s DTP model appeared, these monitors evolved to systems that guarantee their integration
with open environments and that guarantee their interfacing with various components of distributed systems. The TP
monitor is a special kind of middleware that offers services related to the application level. These services are transaction
oriented.

The TP Monitor is a middleware between clients and servers as shown in Figure 1-1.

Figure 1-1: A TP monitor.

The TP monitor’s roles are to:

• Manage and synchronize transactions
• Guarantee a sufficient level of performance and security
• Share the load of simultaneous transactions between different servers
• Handle heterogeneous DBMSs

The monitor’s primary role is to dispatch transactions to one or multiple DBMS servers, allowing many clients to
operate seamlessly. Common DBMSs are unable to handle thousands of simultaneous connections and process their
queries. TP monitors solve the problem by reducing the number of active sessions necessary to process the client
requests. They are probably the most advanced element of traditional client-server architectures where relational
databases are involved. In the Internet scenario, the high number of clients that can potentially initiate a connection to a
server makes the TP monitor middleware an interesting element of the client-server architecture.

The availability of Java-enabled TP monitors shows that there are no limits to what is possible using the Java language,
the Java environment, and traditional elements of client-server systems.

Another Example: A Java CASE Tool

Another interesting product is Platinum Technology, Inc.’s Paradigm Plus code generator. It is a Computer Aided
Software Engineering tool (CASE tool) that supports object-oriented analysis, design, and modeling, as well as reverse
engineering from other languages. From conceptualization to deployment, it promotes component sharing and reuse
across projects in the enterprise. The product supports all leading object-oriented methodologies and notations, and more
— it allows developers to customize methods based on their specific requirements.

Among Paradigm Plus’s many characteristics, the most interesting are its:

• Generation of Java code
• Highly graphical environment
• Object-oriented analysis and design

• Support for OMT, Booch, Yourdon, and so on, methodologies and notation
• Reverse engineering from C, C++, and SQL

• Generation of DBMS and ODBMS schema definitions
• Provision of an object repository
• Support for three-tier and n-tier architectures
• Promotion of Java component reuse

One feature, the generation of DBMS and ODBMS schema definitions, may be of particular interest to JDBC users.

javascript:displayWindow('images/01-01.jpg',500,326)
javascript:displayWindow('images/01-01.jpg',500,326)

Indeed, the physical database design for persistent data may be done within this environment, and the result can then be
applied within the DBMS.

JavaSoft’s (Sun Microsystems) JavaPlan is a similar software engineering tool. There is no doubt that such complete,
robust, and flexible products will help the analyst and developer during their Java projects. This is only the beginning of
a new era and products like the CASE tool will soon emerge in all-Java or Java-enabled versions.

Summary

Java is definitely well suited for networked computing, and is complete enough to build robust, enterprise-class
applications and applets.

The next chapter discusses fundamental database concepts such as SQL and database access interfaces.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Chapter 2
Database Fundamentals

In This Chapter

This chapter discusses fundamental concepts such as relational databases, SQL, and database access programming
interfaces. This chapter includes:

• Relational databases
• Software architectures
• Standard database APIs such as ODBC

Almost 100 percent of today’s enterprise applications use a database. These databases are often managed by a
Relational Database Management System (less often by an Object Database Management System). Whichever database
management system (DBMS) is used, its role in the corporate information system is predominant. The DBMS offers a
lot of features other than a centralized view of what may be a distributed database architecture. DBMSs ensure
availability, integrity, consistency, concurrency, security of the corporate data through access control, and a lot more.
Such DBMS facilities lighten all client programs since they are not involved in these issues. Furthermore, a lot of the
query processing is done within the database management system itself, which makes optimized access plans to data
when parsing client queries. Client programs are not able to do that.

The Java Database Connectivity (JDBC) interface allows Java applets, servlets, and applications to access data in
popular database management systems. The standard for accessing data is SQL, which permits maximum
interoperability. Of course, SQL is the language used with JDBC. JDBC is a software layer that allows developers to
write real client-server projects in Java. JDBC does not concern itself with specific DBMS functions.

Relational Databases

Relational databases are the most common DBMS. A main characteristic of a relational database is the absolute
separation between physical and logical data. Data is accessed through the associated logical model to avoid supplying
physical storage locations and to reduce the limitations imposed by using physical information. Relational databases
allow the definition of relations and integrity rules between data sets. E.F. Codd developed this model at the IBM San
Jose Research Lab in the 1970s. A language to handle, define, and control data was also developed at the IBM lab: SQL.
SQL stands for Structured Query Language. SQL is a query language that interacts with a DBMS. It allows data access
without supplying physical access plans, data retrieval as sets of records, and the performing of complex computations
on the data.

Software Architectures

The first generation of client-server architectures is called two-tiered. It contains two active components: the client,
which requests data, and the server, which delivers data. Basically, the application’s processing is done separately for
database queries and updates, and for user interface presentations. Usually the network binds the back end to the front

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

end, although both tiers could be present on the same hardware. For example, hundreds or thousands of airline seat
reservation applications can connect to a central DBMS to request, insert, or modify data. While the clients process the
graphics and data entry validation, the DBMS does all the data processing. Actually, it is inadvisable to overload the
database engine with data processing that is irrelevant to the server, thus some processing usually also happens on the
clients. The typical client-server architecture is shown in Figure 2-1.

Figure 2-1: Typical client-server architecture with a DBMS.

Load balancing is sometimes necessary. The network becomes a bottleneck when too much data transits from the server
to the clients. When this happens, it is necessary to limit the amount of data that comes back from the server. It is often
unnecessary to display millions of data records on a client’s screen (dynamic queries may return a lot of rows). If the
database engine is overloaded, DBMS replication may be a good solution.

What is more important is that the real business logic is often located in the client’s GUI logic and in the database at the
same time. This occurs in many current applications and is a problem for code maintenance and code reusability. Indeed,
applications evolve with time, but the GUI part, the data part, and the business logic part may not evolve concurrently.
Figure 2-2 illustrates the two-tier architecture.

Figure 2-2: Two-tier architecture.

Although the two-tiered architecture is common, another design is starting to appear more frequently. To avoid
embedding the application’s logic at both the database side and the client side, a third software tier may be inserted. In
three-tiered architectures, most of the business logic is frozen in the middle tier. In this architecture, when the business
activity or business rules change, only the middleware must be modified. Figure 2-3 illustrates the three-tier architecture.

Figure 2-3: Three-tier architecture.

Database Standards

Database vendors are numerous, and, fortunately, industry standards exist. A group of companies or organizations often
define these standards by consensus. It takes a long time before those creating the definitions agree on a common
specification of functions. Standards bodies make sure these specifications match industry requirements. In some cases,
though, developers do not wait for a standard to emerge. If they can invest in in-house–designed technology that will
boost their productivity, they will develop it and use it. However, issues such as standard database connectivity and
interoperability bring such benefits that the return on investment is worth waiting for.

SQL

SQL is not a complete programming language usable to build complex applications. It is commonly used within a host
language that offers specific features for building complete applications. However, SQL is an industry standard to access
databases. It enables data definition, manipulation and management, access protection, and transaction control. Its roots

javascript:displayWindow('images/02-01.jpg',500,324)
javascript:displayWindow('images/02-01.jpg',500,324)
javascript:displayWindow('images/02-02.jpg',500,263)
javascript:displayWindow('images/02-02.jpg',500,263)
javascript:displayWindow('images/02-03.jpg',500,171)
javascript:displayWindow('images/02-03.jpg',500,171)

are in relational databases, and SQL handles many relational database objects, including tables, indexes, keys, rows, and
columns. The American National Standards Institute (ANSI) standardized SQL in 1986 and defined it to be independent
of any programming language and database management system.

The ANSI 1989 standard defines three programmatic interfaces to SQL:

• Modules: Separate compiled modules may define procedures and then call them from a traditional
programming language.
• Embedded SQL: The specification defines embedded statements for a few traditional programming
languages. It allows embedding static SQL statements within complete programs.
• Direct invocation: Access is implementation-defined.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

While embedded SQL was the most popular choice a few years ago, it is not the best answer to the problem of querying
databases in client-server environments. It is static in all senses of the term, and this limitation makes it unsuitable for
newer software architectures.

SQL-92, the newer ANSI specification, addresses modern environment needs. It contains new features such as support
for dynamic SQL and for an advanced technique to access result sets called scrollable cursors. While dynamic SQL is
not as efficient as static SQL, it allows SQL statements to be prepared, to include parameters, and to be generated at run
time. In the case of prepared statements, performance may be increased. In fact, dynamic SQL allows the database to
prepare an access plan before the execution. This access plan is reused each time the statement is called.

SQL language is usable for a variety of purposes, including:

• Querying a database by entering SQL text directly
• Querying a database within a program
• Defining data organization
• Administering data
• Accessing multiple data servers
• Managing transactions

The SQL language supports a set of verbs used to define, store, manipulate, and retrieve data. The following are the
basic SQL verbs used to build SQL clauses for such data manipulation:

To create a table:

CREATE TABLE table
(column type [NOT NULL | PRIMARY KEY |
UNIQUE | ...]
[, column type [NOT NULL | PRIMARY KEY |
 UNIQUE | ...]]*)

For example, to create a table of employees:

CREATE TABLE employees
(id int PRIMARY KEY,
name char(25) NOT NULL,
salary int)

To drop a table:

DROP TABLE table

For example:

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

DROP TABLE employees

To supply new record values:

INSERT INTO table [(column [, column]*)]
VALUES (expr [, expr]*)

For example, to add Jones as employee number one, with a salary of $60,000/year:

INSERT INTO employees
VALUES (“1”, “JONES”, 60000)

To delete rows:

DELETE FROM table
WHERE column [< | > | = | <= | >= | <> | LIKE] expr
[AND | OR ...]*]

For example, to delete all employees earning more than $150,000 a year:

DELETE FROM employees
WHERE salary > 150000

To retrieve data:

SELECT [DISTINCT] [table.]column [, [table.]column]*
FROM table [= name] [, table [=name]]*
[WHERE [table.]column [< | > | = | <= | >= | <> |
LIKE] expr
[AND | OR ...]*]
[ORDER BY [table.]column [ASC | DESC]
[, [table.]column [ASC | DESC]]]
[HAVING ...]

For example, to retrieve all employees earning more than $50,000, sorted by salary (higher first) and name:

SELECT * FROM employees
WHERE salary > 50000
ORDER BY salary DESC, name

To modify data:

UPDATE table SET column = expr [, column = expr]*
WHERE [table.]column [< | > | = | <= | >= | <> |
LIKE] expr
[AND | OR ...]*

For example, to raise Jones’ salary to $70,000 (Jones is employee number one):

UPDATE employees SET salary = 70000
WHERE id = 1

To create an index:

CREATE [UNIQUE] INDEX index
ON table (column [, column]*)

For example, to create an index on the name field:

CREATE INDEX idx_employees
ON employees (name)

To create a stored procedure:

CREATE PROCEDURE procedure
[[(]@parameter type [= default] [IN | OUT | INOUT]
[, @parameter type [= default]
[IN | OUT | INOUT]]* [)]] [WITH RECOMPILE]
AS sqlstatement

For example, to create a stored procedure returning the highest salary via a parameter:

CREATE PROCEDURE maxsalary (@themax int OUT)
AS SELECT @themax = MAX(salary)
FROM employees

Book references are listed in the appendix for those who have not mastered SQL. DBMS reference books and online
manuals may help while providing more details about specific implementations of SQL.

SAG-X/Open CLI

The X/Open and SQL Access Group defined the Call Level Interface (CLI). CLI is a library of function calls that
support SQL statements. For example, Microsoft’s ODBC (Open Database Connectivity) is a Call Level Interface. JDBC
is also a Call Level Interface. Most database vendors have optimized CLI implementations for their database
management system products. ODBC and JDBC are less proprietary interfaces, though they intensively use these
specific CLIs to access databases. The most important benefit for programmer’s using the ODBC CLI or the JDBC CLI
is interoperability — all clients adhere to a standard programming interface. CLI requires neither host variables nor other
embedded SQL concepts that would make it less flexible from a programmer’s perspective. It is still possible, however,
to maintain and use specific functions of a database management system when accessing the database through a CLI.

An Industry Standard: ODBC

ODBC is Microsoft’s implementation of a CLI. It allows the programmer to develop, compile, and deploy an application
without targeting a specific DBMS. Modules called drivers link the application to the database of their choice. For this
reason and because it is independent of the network layer protocols, ODBC permits maximum interoperability. The
availability of specific drivers for almost all relational database management systems has determined its success. The
JDBC mechanisms are very close to the ODBC, but are adapted for Java. In designing an appropriate interface for direct
use from Java, issues such as security, implementation, robustness, and portability were addressed. The following section
provides more details about ODBC.

The ODBC Interface

The ODBC interface defines a library of function calls that allow an application to connect to a DBMS, execute SQL

statements, and retrieve results. Its syntax is based on the X/Open and SQL Access Group SQL CAE specification
(1992), which defines a standard set of error codes, a standard way to initiate a connection, and a standard representation
for data types. In addition to the core functions based on the X/Open and SQL Access Group Call Level Specification, it
provides extended functions for handling scrollable cursors and asynchronous processing.

ODBC Components

The ODBC interface defines the possible interactions between the user application and the driver manager. Figure 2-4
shows the relationship between the four ODBC components.

Figure 2-4: The four ODBC components.

Previous Table of Contents Next

javascript:displayWindow('images/02-04.jpg',500,325)
javascript:displayWindow('images/02-04.jpg',500,325)

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Application

The user application calls ODBC functions to send SQL statements to the database and retrieve results. It performs these
tasks:

• Requests a connection with a data source
• Sends SQL statements to the data source
• Defines storage areas and data types for the result sets
• Requests results
• Processes errors
• Controls transactions; requests commit or rollback operations
• Closes the connection

Driver Manager

Driver manager’s primary purpose is to load specific drivers on behalf of the user application. It may also:

• Perform a lookup in an ODBC configuration file or system registry to map the ODBC Data Source Name
(DSN) to a specific DBMS driver
• Process ODBC initialization calls
• Provide entry points to ODBC functions for each specific driver
• Perform parameter and sequence validation for ODBC calls

Driver

The driver processes ODBC function calls, sends SQL statements to a specific data source, and returns results back to
the application. When necessary, the driver translates and/or optimizes requests so that the request conforms to the
syntax supported by the specific DBMS. The driver:

• Establishes a connection to a data source
• Sends requests to the data source
• Performs translations when requested by the user application
• Returns results to the user application
• Formats errors in standard ODBC error codes
• Manipulates cursors if necessary
• Initiates transactions, if they are explicitly required

There are two types of ODBC drivers:

• Single-tier, which processes ODBC calls and SQL statements
• Multiple-tier, which processes ODBC calls and sends SQL statements to the data source

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

Data Source

The data source consists of the data the user application wants to access and its associated parameters — that is, the type
of operating system, DBMS, and network layer (if any) used to access the DBMS.

Summary

This chapter discussed fundamental concepts such as relational databases, SQL, and database access programming
interfaces.

The next chapter discusses the Java Database Connectivity API’s role, components, and possible alternatives to it.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Chapter 3
Database Integration With JDBC

In This Chapter

This chapter discusses how to integrate databases with Java using Java Database Connectivity (JDBC) and other
techniques. This chapter includes:

• The role of JDBC
• The components of JDBC and their characteristics
• JDBC alternatives

Java Database Connectivity classes are Java classes that allow an application to send SQL statements to a database
management system (DBMS) and retrieve the results. JDBC functions the same as Open Database Connectivity
(ODBC). One of JDBC’s strengths is interoperability — a developer can create JDBC applications without targeting a
specific DBMS. Users can use specific JDBC drivers to target a specific database. Interoperability on the client side is
also provided when using all Java solutions. Figure 3-1 shows Java clients running on different platforms.

Figure 3-1: Java clients running on different platforms.

The Role of JDBC

The JDBC interface provides the application with a set of methods that enable database connections, queries, and result
retrievals. It is the interface between specific database drivers and the Java user application, applet, or servlet.

The functions a user application can call are methods of connection, statements, or results object classes. Java is an
object-oriented programming language, and the problems of impedance mismatch between Structured Query Language
(SQL) and object-oriented programming (OOP) language have been minimized.

JDBC Characteristics

JDBC’s characteristics are:

• JDBC is a “call-level” SQL interface for Java. This interface is totally independent of the available database
management systems. It is a low-level application programming interface (API) that allows a Java program to
issue SQL statements and retrieve their results. It also provides methods for error and warning messages

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
javascript:displayWindow('images/03-01.jpg',500,321)
javascript:displayWindow('images/03-01.jpg',500,321)

management. As shown in Figure 3-2, JDBC is located at the client side.

Figure 3-2: JDBC is located on the client side.

• SQL conformance: JDBC does not restrict the type of queries passed to an underlying DBMS driver. An
application may use as much SQL functionality as desired. The underlying drivers are authorized to claim
JDBC compliance on the condition they fully support ANSI SQL-92 Entry Level. SQL-2 Entry Level
conformance is widely supported today and guarantees a wide level of portability.
• JDBC may be implemented on top of common SQL level APIs, in particular on top of ODBC.
• JDBC provides a Java interface that stays consistent with the rest of the Java system. There are no conflicts
because of opposed philosophies expressed by the impedance mismatch between the object-oriented world
(Java) and the tabular world (SQL).
• The JDBC mechanisms are simple to understand and use. This simplicity does not mean that functionality
suffers.
• JDBC uses strong, static typing whenever possible. This approach allows for performing more error checking
at compile time. It should not be a limitation to JDBC’s usage, however.
• One functionality, one method: This concept has been adopted, as opposed to many other DBMS SQL level
APIs, to keep it simple yet powerful for the beginner as well as the experienced developer.

JDBC Components

The following are JDBC components:

Application: The user application invokes JDBC methods to send SQL statements to the database and retrieve results. It
performs these tasks:

• Requests a connection with a data source
• Sends SQL statements to the data source
• Defines storage areas and data types for the result sets
• Requests results
• Processes errors
• Controls transactions: requests commit or rollback operations
• Closes the connection

Driver Manager: Its primary purpose is to load specific drivers for the user application. It may also perform the
following:

• Locate a driver for a particular database
• Process JDBC initialization calls
• Provide entry points to JDBC functions for each specific driver
• Perform parameter and sequence validation for JDBC calls

Driver: The driver processes JDBC methods invocations, sends SQL statements to a specific data source, and returns
results back to the application. When necessary, the driver translates and/or optimizes requests so the request conforms
to the syntax supported by the specific DBMS. It will:

• Establish a connection to a data source
• Send requests to the data source
• Perform translations when requested by the user application
• Return results to the user application

javascript:displayWindow('images/03-02.jpg',500,228)
javascript:displayWindow('images/03-02.jpg',500,228)

• Format errors in standard JDBC error codes
• Manipulate cursors if necessary
• Initiate transactions, if explicitly required

There are three types of JDBC drivers.

Proprietary Database Drivers: They process JDBC calls and send SQL statements to the data source. They may be
“native-API partly-Java” or “native-protocol all-Java.” A native-API driver forwards the calls to a locally installed
library, usually developed in C and provided by the database vendor. It may be a Dynamic Link Library (DLL) or a .so
shared library. Figure 3-3 shows native-API partly-Java drivers.

Figure 3-3: Native-API partly-Java drivers.

A native-protocol all-Java driver implements in Java all the layers necessary to communicate with the database. They are
fully portable because they do not use local libraries or other native code. Figure 3-4 shows native-protocol all Java-
drivers.

Figure 3-4: Native-protocol all Java-drivers.

Bridge Drivers: This driver creates a bridge between JDBC and another Call Level Interface (CLI). For example, the
JDBC-ODBC Bridge is a bridge driver. It processes JDBC calls and, in turn, calls ODBC functions that will send SQL
statements to the ODBC data source. Figure 3-5 shows the JDBC-ODBC Bridge driver.

Figure 3-5: The JDBC-ODBC bridge driver.

DBMS-independent all-Java Net drivers: These drivers use a DBMS-independent published network protocol. They
are very portable because they are 100 percent Java. Figure 3-6 shows the Net Driver.

Figure 3-6: The Net driver.

Data Source: The data source consists of the data the user application wants to access and its associated parameters —
that is, the type of DBMS and network layer (if any) used to access the DBMS.

The JDBC interface defines the possible interactions between the user application and the driver manager. Figure 3-7

javascript:displayWindow('images/03-03.jpg',500,329)
javascript:displayWindow('images/03-03.jpg',500,329)
javascript:displayWindow('images/03-04.jpg',500,343)
javascript:displayWindow('images/03-04.jpg',500,343)
javascript:displayWindow('images/03-05.jpg',491,334)
javascript:displayWindow('images/03-05.jpg',491,334)
javascript:displayWindow('images/03-06.jpg',464,96)
javascript:displayWindow('images/03-06.jpg',464,96)

shows the relationship between the four JDBC components.

Figure 3-7: The complete JDBC architecture.

Previous Table of Contents Next

javascript:displayWindow('images/03-07.jpg',500,311)
javascript:displayWindow('images/03-07.jpg',500,311)

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Integration Issues

Many applications call the ODBC interface or the native database drivers interfaces. In much the same way, if these
applications were ported to Java, they would use the JDBC API to perform the same operations.

Consider these two questions when starting an integration project. First, will the future application, applet, or servlet be
used in a trusted environment or on the Internet? Second, is it worth embedding all the application’s logic into a separate
tier as a hedge against the business rules evolving as fast as technology? The discussion of these issues in the following
sections will help you decide which is the best architecture for your application’s purpose.

Internet or Intranet?

If the application will be used within the intranet only, there is no need to worry about untrusted environments.
Normally, every user that has access to the application will run a trusted system. According to today’s security rules, this
user can launch applications that connect to various hosts within various departments of the company to make a
connection to applications and servers. Provided that these users run the usual desktop computer and operating system,
they can use local file systems as well.

In contrast, if the application is deployed across the Internet to thousands or millions of unregistered users, it is
mandatory to assume that these users run an untrusted environment. They are usually allowed to connect to your
company’s World Wide Web (WWW) server, browse pages, fill in forms, activate common gateway interfaces (CGIs),
and download Java applets. These applets, while being real “applications” running on the client side, are usually not able
to write to, or read from, local files. Unless the user specified otherwise, the user will not be able to open transmission
control protocol (TCP) streams to arbitrary hosts on the Internet or within your company. In such a situation, it is not
possible to rely on local resources such as parameters files, registry, or native libraries and drivers. On the contrary,
everything must come from the network. In the case of a database application, these restrictions may impact the design
of the application. For example, the location of the database server will not be looked up in a local file. No native
database driver will be used. Chapter 4 discusses these issues. Also, the application usually connects to the host from
which it came. This host is usually a WWW server. Depending on the architecture, this host may be running both the
main WWW server and the DBMS server processes, or it may be running a smaller WWW server process that only
delivers applets while also running the DBMS server. In this latter case, the main WWW server will present pages that
refer to applets located at the uniform resource locator (URL) of the second dedicated WWW server. It is possible,
however, not to locate the DBMS on the WWW server. By using a third tier, for example, the DBMS may run on a
dedicated machine with an enhanced input/output (I/O) subsystem. Again, it depends on the architecture, but from the
software viewpoint, this middleware could provide specific services to the whole system.

The “Business Logic” of an Application

The business logic of an application is the way it operates according to the business rules. But what are these business
rules? Are they standard colors? Standard screen layouts? Standard keyboard mappings? Generally, the business rules
for the corporate data include:

• Standard formats

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

• Integrity rules
• Consistency rules
• Access control

For the operations allowed on the corporate data, the rules include:

• Creation/modification/replication/deletion of entities
• Execution of standard procedures
• Access control

Usually the actions are performed within the SQL language augmented with specifics of the underlying DBMS. These
SQL statements are located on the client side and/or on the database side. For example, a SQL SELECT statement may
be linked to a “PROCEED” button of the client graphical user interface (GUI), while other statements may be stored in
the database as stored procedures. Whatever these statements will actually do, they will implicitly or explicitly use one
or more business rules. What happens if the business rules change? It may be possible to modify the client code and the
stored procedure that need modification according to the new rules. In the case of an application deployed to thousands
of users, making such modifications may be problematic. There are some companies that need to adapt themselves to
very frequent and important changes. Fortunately, there are solutions for such companies. Changing the stored
procedures in one or more DBMSs is probably a lot easier than changing and deploying a thousand client applications.
Because storing procedures in the DBMS offers a practical solution to well-known problems, the logic within stored
procedures is usually kept in the DBMS. That should not be true for the business logic inside client programs. Indeed, a
third tier, best defined using an object paradigm, should embed most of the application’s logic. In fact, applets solve the
deployment problem because they are downloaded automatically each time they are requested, providing that the
original versions are newer than those cached in the clients (if the clients support caching of applets).

Other Solutions

Many other solutions to the problem of modifying business rules have appeared since Java’s early days. The problem
concerned database application developers.

The CGI Approach

The CGI is usually implemented behind a World Wide Web server process on the same machine. While such CGIs may
perform many tasks, such as sending e-mail or displaying the number of times a particular page was requested (hit
count), they may also interact with a Database Management System and format hypertext markup language (HTML)
pages “on the fly” for display in the user’s browser. Figure 3-8 shows the CGI behind the Web server.

Figure 3-8: The CGI behind the WWW server.

Listing 3-1 is an example of an HTML form containing query fields. Submission of the form launches a CGI application
on the Web server. This application opens a connection to a database and sends a SELECT query with the parameters
passed as arguments. When the results are retrieved from the database, they are formatted and an HTML page is sent
back to the client browser.

Previous Table of Contents Next

javascript:displayWindow('images/03-08.jpg',500,269)
javascript:displayWindow('images/03-08.jpg',500,269)

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Listing 3-1: An HTML form.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2//EN”>
<HTML>
<HEAD>
<TITLE>The CGI approach</TITLE>

</HEAD>
<BODY>
<H1>The CGI approach</H1>
<P>

/cgi-bin/emp_locator is a CGI which performs lookups in a database.

</P>
<P>
<HR>
<FORM METHOD=”POST” ACTION=”/cgi-bin/emp_locator”>
Employee Locator
</P>
<P> Search on (multiple)
<SELECT NAME=”LookFor” MULTIPLE>
<OPTION SELECTED>Name
<OPTION>Title
<OPTION>Department
<OPTION>Location
</SELECT>
</P>
<P>which
<SELECT NAME=”How”>
<OPTION SELECTED>starts with
<OPTION>contains
<OPTION>is exactly
<OPTION>sounds like
</SELECT>
</P>
<P>the following:
<INPUT TYPE=”text” NAME=”Match-pattern”>
</P>
<P>
<INPUT TYPE=”checkbox” NAME=”Use-Case” VALUE=”Yes”>Case-sensitive
</P>
<P>
<INPUT TYPE=”submit” VALUE=”Submit”>
</FORM>
<HR>
</P>

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

</BODY>
</HTML>

This HTML document displays the form in the browser window shown in Figure 3-9.

Figure 3-9: The CGI approach — HTML forms.

A Java applet that was downloaded from the network may perform some communication with the server from where it
originated. Two kinds of mechanisms may be used to give an applet data that resides in a database.

In the first mechanism the applet connects itself to the server via the java.net.URL Connection class and asks the WWW
server to initiate a common gateway interface that connects to the database, eventually sending it some parameters. This
CGI application then forwards data to the applet as shown in Figure 3-10.

Figure 3-10: An applet using a proprietary protocol.

In this case, a Java applet sends the data used as input to the CGI application. As soon as the CGI retrieves the data from
the database, it sends it back to the applet. This process is more interactive than the simple HTML form. Figure 3-11
shows such an applet.

Figure 3-11: The Java applet approach.

There are two ways to send parameters to a CGI application: HTML GET form submission and HTML POST form
submission. In the case studied here, the Java applet must mimic one of these ways. Here is an example of what must be
sent along with the URL to perform a GET submission:

http://torremolinos/cgi-bin/emp_locator?LookFor=Name
&How=contains&pattern=Bernard

On the other hand, an HTML POST submission from Java will look like this:

javascript:displayWindow('images/03-09.jpg',475,565)
javascript:displayWindow('images/03-09.jpg',475,565)
javascript:displayWindow('images/03-10.jpg',500,268)
javascript:displayWindow('images/03-10.jpg',500,268)
javascript:displayWindow('images/03-11.jpg',475,565)
javascript:displayWindow('images/03-11.jpg',475,565)

POST /cgi-bin/emp_locator HTTP/1.0
Content-type: application/x-www-form-urlencoded
Content-length: 42
{your data goes here}
LookFor=Name&How=contains&pattern=Bernard
...

On behalf of data that was previously entered via HTML forms, the CGI application may build a custom HTML page
containing an <APPLET> tag to tell the browser that an applet has to be downloaded. It can add <PARAMETERS> tags
filled with data extracted from the database using the user’s data that was previously entered through the HTML form, as
shown in Figure 3-12.

Figure 3-12: An applet receiving data from its parameters.

Listing 3-2 is an HTML form that is sent back to the client browser. It contains the applet tag and information passed as
applet parameters. Such an HTML document is typically sent after a submission of values from an HTML form:

Listing 3-2: An HTML form.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2//EN”>
<HTML>
<HEAD>
<TITLE>The CGI approach</TITLE>

</HEAD>
<BODY>
<H1>The CGI approach</H1>
<P>

/cgi-bin/emp_locator is a CGI which performs lookups in a database.

</P>
<P>
<HR>
Employee Locator
</P>
<APPLET CODE=myApplet width=600 height=500>
<PARAM NAME=name VALUE=’Bernard Van Haecke’>
<PARAM NAME=title VALUE=’Java evangelist’>
<PARAM NAME=location VALUE=’BXL’>
</APPLET> <HR>
</P>
</BODY>
</HTML>

The first method to connect applets to a database is used when an interface is needed to build the query. The second
connection method may be used only to process the results after an HTML POST or HTML GET submission.

While these approaches work, they have some inherent limitations. Because CGI applications add overhead to the
WWW server, take care to avoid overloading the server.

javascript:displayWindow('images/03-12.jpg',500,266)
javascript:displayWindow('images/03-12.jpg',500,266)

Java Wrapper Classes

Java wrapper classes usually do not use JDBC classes to perform a database connection and send/retrieve data to and
from the database. On the contrary, they often use native methods and libraries that are, by definition, not portable. They
also offer a higher level of abstraction by mapping rows of data to Java objects data members, providing a solution to the
impedance mismatch between SQL and Java.

Using JDBC with an ODBMS

While JDBC and JDBC drivers must support at least ANSI SQL-92 Entry Level, there are no limitations on the kind of
statements that may be submitted to the Database Management System. An application query may be a specialized
derivative of SQL. Many Object Database Management Systems (ODBMS) vendors have endorsed the JDBC
specification. They will probably provide higher-level APIs to map directly stored objects to Java classes. The goal is to
offer a persistent service for Java classes, without worrying about specific DBMS-API access issues that make
programming more difficult and less efficient from a developer’s point of view. Object databases are particularly well
suited to store multimedia information. Among other kinds of data, they offer enhanced facilities to handle, store,
retrieve, and query HTML documents, images, free text, video, audio, multidimensional graphics, and even Java objects.
All these multimedia objects, if considered as persistent data members of an object-oriented programming language such
as C++, Smalltalk, or Java, may then be manipulated very easily within such languages.

Using an Object/Relational DBMS Bridge

An Object/Relational DBMS bridge is a software tier that presents relational data in an object-oriented way and provides
methods similar to those of ODBMSs. Like ODBMSs, such a bridge provides persistency to objects, but also integrates
with a wide variety of relational DBMSs while exploiting their inherent specifications. An Object/Relational DBMS
bridge may be used in conjunction with existing developments, thus preserving investments in resources such as
relational DBMS engines, data they may contain, and physical resources associated with them. This software may be an
alternative to using an Relational DBMS directly from JDBC.

Summary

This chapter discussed the integration of databases with Java using JDBC and other techniques, including:

• The role of JDBC
• The components of JDBC and their characteristics
• JDBC alternatives

The next chapter discusses the mechanisms, interfaces, and typical uses of JDBC.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Part II
Exploring JDBC

Chapter 4: Getting Started

Chapter 5: Database Connectivity Step-by-Step

Chapter 6: Fine Tuning

Chapter 7: Advanced Techniques

Chapter 8: the three-tiered Approach

Chapter 9: Design Issues

Part II presents JDBC in a comprehensive tutorial format — its architecture and components and all its features. You’ll
learn how to maximize its features and use the most advanced techniques.

After an introduction, you will study database connectivity using JDBC — step-by-step. You will then learn more
advanced approaches to interact with a DBMS. Finally, you will study three-tiered architectures and DBMS integration,
architecture, and design issues.

Chapter 4
Getting Started With JDBC

In This Chapter

This chapter discusses the mechanisms used by JavaDatabase Conncectivity (JDBC), its programming interfaces, and
some typical uses of JDBC.

JDBC is a set of programming interfaces. This chapter discusses which application programming interfaces (APIs) are of
interest to the database application developer.

The JDBC Mechanisms

The two major components of JDBC are the JDBC API and the JDBC Driver API. As Figure 4-1 shows, the JDBC
API is a programming interface for database applications developers, while the JDBC Driver API is a lower level
programming interface for developers of specific drivers. We focus on the JDBC API.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

Figure 4-1: The JDBC APIs.

To write a successful database application with the Java Language Environment and JDBC, certain steps must be taken.
These steps are very similar to those taken by C programmers using a Call Level Interface (CLI).

The first step is to create a method for connecting to the database, equivalent of a connection context, associated with a
specific database driver. Eventually, parameters are provided to locate a specific database, to allow sign-on as a
recognized user giving identification and authentication, and to target a specific database managed by the database
management system (DBMS). Once a connection is established, various actions are allowed, including closing it,
sending queries, updates, and everything that is called a SQL statement, including requests to execute a precompiled
SQL statement and stored procedures. Of course, a mechanism to access the results sets is also provided. Figure 4-2
depicts the basic actions performed on the client and at the database side.

Figure 4-2: Actions performed on the client and at the DBMS sides.

A mechanism to handle errors is also provided. Exception management addresses this issue in Java by allowing the
developer to call specific procedures after an error occurs.

The next section describes JDBC API interfaces in greater detail.

The JDBC Interfaces

The methods discussed in the prior section are expressed as Java interfaces that are implemented by specific database
drivers. The JDBC interfaces that database application developers use are:

• java.sql.DriverManager: A class that provides methods to load drivers and to support the creation of
database connections using methods expressed in the java.sql.Driver interface.
• java.sql.Connection: Represents a particular connection on which further actions will be allowed.
• java.sql.Statement: Associated to a connection, it allows SQL statements to be sent to the database.
• java.sql.CallableStatement: It has the same role as java.sql.Statement, but in the context of database stored
procedures.
• java.sql.PreparedStatement: It also has the same role as java.sql.Statement, but in the context of
precompiled SQL.
• java.sql.ResultSet: Allows access to the rows of a previously executed statement.
• java.sql.ResultSetMetaData: Gives information like type and properties of the columns in a result set.
• java.sql.DatabaseMetaData: Provides information about the database as a whole.

Figure 4-3 is a simplified view of the relationship between the driver manager and the connection, statement, and result
set objects.

Figure 4-3: The relationship between the main JDBC interfaces.

javascript:displayWindow('images/04-01.jpg',500,247)
javascript:displayWindow('images/04-01.jpg',500,247)
javascript:displayWindow('images/04-02.jpg',500,146)
javascript:displayWindow('images/04-02.jpg',500,146)
javascript:displayWindow('images/04-03.jpg',500,329)
javascript:displayWindow('images/04-03.jpg',500,329)

Typical Use

Design choices between things that offer different qualities and drawbacks are made based on the targeted user
community. To help evaluate the pros and cons of each choice, the next two sections explore different scenarios and
show what is the best solution to address their problems.

Applications and Applets

Java’s fame is mainly from its use of applets downloaded from the Internet. While the types of application are virtually
unrestricted, there are still a few matters to consider.

The differences between untrusted applets and traditional applications are:

• An untrusted applet cannot access local files nor open arbitrary network connections to remote hosts. An
application accesses the local file system according to the permissions granted the user.
• An untrusted applet cannot rely on specific facilities provided by the underlying operating system, such as a
local registry, to locate a database. Applications often rely on such facilities; for example, Open Database
Connectivity (ODBC) uses an .INI file or the registry, and most proprietary APIs use specific properties files.
• With an untrusted applet, response times may be arbitrary when traffic peaks arise on the Internet.
• Untrusted applets provide no way to estimate the maximum number of simultaneous users.

As Figure 4-4 shows, an applet is highly dependent on components that are not present in traditional scenarios —
networks and application servers.

Figure 4-4: An applet communicating with a server.

These differences are not necessarily serious drawbacks. Indeed, it is neither necessary nor preferable for applets to look
in specific files to locate a database. Complicated connection information may be provided, using parameters passed to
the applet from within the HTML page, so the users will not have to remember long and cryptic URLs in order to open
the JDBC connection.

Because this applet is trusted, for reasons such as it was signed with a cryptographic key or the user decided to trust
applets from a specific host, does not mean that it will be allowed to behave in the same way as another application on
the user’s machine.

Previous Table of Contents Next

javascript:displayWindow('images/04-04.jpg',500,210)
javascript:displayWindow('images/04-04.jpg',500,210)

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Another approach is the three-tier architecture, which is discussed in greater detail later. While some of its benefits were
already explained, this approach solves what might be the applet’s biggest problem. Eventually, the applet makes a
connection to the third tier and requests or calls an action on a particular object. This request should trigger a
conversation between the third tier and the database management system. In this case, connection information like
database identification may be excluded from the applet’s code. Figure 4-5 depicts such a three-tiered architecture.

Figure 4-5: Three-tier design.

Java stand-alone applications are suitable within intranets and are deployable to specific users across the Internet,
provided those users have access to some kind of parallel file transfer program. These applications run trusted code, are
allowed to access the local file system, and open network connections to arbitrary hosts, just as normal applications do.
Figure 4-6 represents the parts of a stand-alone application.

Figure 4-6: The parts of a stand-alone Java application.

ODBC Versus Specific Drivers as Subprotocol

ODBC is available on a wide variety of platforms, including Windows, Unix, and Macintosh environments. This wide
use is not enough to make a Java-based project totally portable, but it is sufficient in many cases.

Using an ODBC leads to the same problem of deploying a non-Java underlying layer. It is very difficult to use such
solutions on devices such as pure Network Terminals, but you may consider using an ODBC bridge or a native driver
during development tests or within an environment known to be stable or not meant to evolve.

The reasons such solutions are difficult to use are:

• ODBC is a native component dependent on the platform
• ODBC uses a local registry or configuration file to look up data source names
• ODBC uses native drivers that are dependent on the platform
• ODBC is software that must be administered on each client platform separately

On the other hand, a full Java native-protocol driver, eventually using a third tier that does most of the job, offers these
benefits:

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
javascript:displayWindow('images/04-05.jpg',500,194)
javascript:displayWindow('images/04-05.jpg',500,194)
javascript:displayWindow('images/04-06.jpg',500,265)
javascript:displayWindow('images/04-06.jpg',500,265)

• It is independent of the platform it is running on
• It uses a universal mechanism to name data sources — URLs
• It may be upgraded automatically

Summary

This chapter discussed the mechanisms used by JDBC, its programming interfaces, and some typical uses of JDBC.

The next chapter explains how to program with JDBC.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Chapter 5
Database Connectivity, Step by Step

In This Chapter

This chapter discusses step-by-step programming with Java Database Connectivity (JDBC). This chapter includes:

• Initiating a database connection
• Sending simple SQL statements and retrieving results
• Error management

This chapter explains how to make a successful connection to a database, how to send SQL statements to this database,
and how to retrieve the results. The procedure is very straightforward; typically, every database application developed
using Java and JDBC uses it.

First Steps

JDBC is composed of a set of interfaces and classes that implement the functions needed to deal with a database
management system (DBMS). We use these interfaces and classes in this chapter:

• java.sql.DriverManager
• java.sql.Driver
• java.sql.Connection
• java.sql.Statement
• java.sql.ResultSet
• java.sql.Date
• java.sql.Time
• java.sql.Timestamp
• java.sql.Types
• java.sql.DataTruncation

First, make sure that the JDBC Application Programming Interface (API) classes and specific drivers implementations
are available on your system and reachable by following the CLASSPATH environment variable value. This
environment variable should normally point to one or more directories where your Java classes are located. If necessary,
update it or move the JDBC and drivers subdirectories to an appropriate location on your hard disk. When done, the Java
class loader will be able to find these classes and will not try to download them from the network.

Typically, you should see a subtree resembling the following when scanning your CLASSPATH environment variable
(jdbc/odbc/… was used for Listing 5-1; you may choose not to install it).

Listing 5-1: A typical class subtree.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

classes/
+—— java/
| +—— .../
| |
| +—— sql/
| +——- CallableStatement.class
| Connection.class
| DatabaseMetaData.class
| DataTruncation.class
| Date.class
| Driver.class
| DriverInfo.class
| DriverManager.class
| DriverPropertyInfo.class
| PreparedStatement.class
| ResultSet.class
| ResultSetMetaData.class
| SQLException.class
| SQLWarning.class
| Statement.class
| Time.class
| Timestamp.class
| Types.class
+—— jdbc/
+—— odbc/
+—— JdbcOdbc.class
 JdbcOdbcBoundCol.class
 JdbcOdbcBoundParam.class
...
...

To make the JDBC classes available to the current class using the abbreviated name, use the import statement in source
programs. The code will be more readable by not using the fully qualified names. So, the following line should be
included at the top of the Java program, applet, or servlet:

import java.sql.*;

This statement is really useful for the programmer. Replace the star symbol with the relevant classes in the JDBC
package.

Use the usual command line to compile your JDBC project:

% javac example.java

You may use the classpath parameter to specify additional Java classes that are not reachable through the CLASSPATH
environment variable.

Database Connection

A connection must be initiated to access a database. The connection is a Java object containing Java methods to access
the database. The connection class also holds information on the state of connections.. Various connection parameters
are necessary, for example, to locate the database, to specify drivers and protocols, and to specify user account and
password in the DBMS. The format of these parameters and how to set them is discussed later.

As shown in Figure 5-1, the first step is the establishment of a connection. The last step will, of course, be the
termination (“closing”) of the connection. Opening and closing the connection usually creates and releases user
resources within the database management system and driver.

Figure 5-1: Overview of the connection.

To create an instance of a connection, it is necessary to understand the JDBC naming scheme.

JDBC’s Database Naming

JDBC uses a particular syntax to name a database. The designers wanted to use a widely understood, appreciated, and
supported convention: the Uniform Resource Locator (URL) syntax. In this case, the URL has the following form:

jdbc:<subprotocol>:<subname>

In this form, jdbc means that the protocol is JDBC, the subprotocol field is the name of the JDBC driver to be used, and
the subname is a parameter string that is dependent on the subprotocol. Figure 5-2 illustrates the JDBC URL naming
mechanism.

Figure 5-2: JDBC mechanism to name a data source.

These examples show some of the uses of database URLs:

jdbc:odbc:sampledb

A JDBC-Open Database Connectivity (ODBC) bridge will be used, and the ODBC DSN (data source name) is
sampledb.

jdbc:odbc:sampledb;UID=javauser;PWD=hotjava

This URL is the same as the previous one, but adds a user-ID and password. Other attributes may also be added.

jdbc:mydbdrv://www.mydomain.net:8192/mydb

In this case, the subprotocol is called mydbdrv. The database engine is running on the www.mydomain.net host (the
subname field), the Transmission Control Protocol/Internet Protocol (TCP/IP) port that should be used is 8192, and
mydb is the name of the database to be accessed. The significance of these parameters is somewhat arbitrary. For
example, if the subprotocol (the driver) always uses the same port number, it is unnecessary to provide it in the URL. In
this example, mydb, called a sub-subname, refers to a specific database instance. Other types of JDBC drivers may

javascript:displayWindow('images/05-01.jpg',302,285)
javascript:displayWindow('images/05-01.jpg',302,285)
javascript:displayWindow('images/05-02.jpg',500,269)
javascript:displayWindow('images/05-02.jpg',500,269)
http://www.itknowledge.com/reference/standard/0764531441/ch05/www.mydomain.net

interpret the sub-subname as something else, other than a specific database instance name.

jdbc:dcenaming:employees

This URL suggests that a local Distributed Computing Environment (DCE) naming service should be used to locate the
database named “employees.” This service will resolve “employees” into a particular name more appropriate to locate
the database engine. Another type of network naming protocol could be used, for example, NIS (Network Information
System).

Note that the ODBC subprotocol URL should always conform to:

jdbc:odbc:<dsn>[;<attribute-name>=<attribute-value>]*

The JDBC URL syntax is flexible enough to allow specific drivers to interpret their own syntax.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

JDBC Drivers

A specific database is usually reachable through one or more drivers. The Driver Manager and Driver objects provide
methods to load a driver and handle driver properties. JDBC must have some knowledge about the available drivers.
This knowledge comes from a jdbc.drivers system property. It can be set via the Java interpreter command line or via a
property file.

Via the command line (which may be included in a shell script or batch file for greater convenience when invoking stand-
alone programs):

% java -Djdbc.drivers=vendor1.driver1 example

Via a file, for example, when using the applet viewer or Sun’s HotJava browser:

On Unix, this file is ~/.hotjava/properties
jdbc.drivers=vendor1.driver1

While the database URL specifies a specific database and protocol to be used, it is sometimes preferable to let the JDBC
choose between two or more drivers. In this case, it is possible to specify a driver list in the property called jdbc.drivers.
The list of driver class names should be colon separated, for example:

’vendor1.dbdrv:vendor2.sql.foodriver:vendor3.db.connectdrv’

JDBC will try to use each of the drivers listed in jdbc.drivers until it finds one that can successfully connect to the given
URL. Drivers that are untrusted code will be skipped. The driver will register itself with the driver manager to allow
connections to be made.

In case the JDBC.driver system property is unavailable, there is a way to force a particular driver to be loaded. For
example, the following line will load a JDBC-ODBC bridge driver:

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Another method is to use the following statements, but these statements will register the bridge driver class with the
driver manager:

Driver myDriver = new sun.jdbc.odbc.JdbcOdbcDriver();
java.sql.DriverManager.registerDriver(myDriver);

Internals

Methods are available to set or query driver and driver manager properties. They are used internally, and a programmer

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

will usually not deal with them unless he or she wants to do some fine tuning. They are of interest for advanced
programmers who need to discover and set specific properties.

For the moment, we will only see those dealing with JDBC message logging. Indeed, the driver manager and all drivers
may issue logging and tracing information. A few methods are provided here to redirect these messages and to print
specific messages in the log stream.

DriverManager

void setLogStream(java.io.PrintStream out);
java.io.PrintStream getLogStream();
void println(String logmessage);

Here is the explanation:

void setLogStream(java.io.PrintStream out);

The setLogStream() method sets the logging print stream that is used by the driver manager and by the drivers. It can
be set to null to disable this facility.

java.io.PrintStream getLogStream();

The getLogStream() returns the print stream that is used for logging and tracing. It returns null when logging and
tracing is disabled.

void println(String logmessage);

This method, shown in Listing 5-2, is used to send a message to the logging stream.

Listing 5-2: The log stream.

// setting the log stream
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 try {
 String url = “jdbc:odbc:mysource”;
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 DriverManager.setLogStream(java.lang.System.out);
 DriverManager.println(“Driver registered with the DriverManager!”);
 // ...
 } catch (java.lang.Exception ex) {}
 }
}

More advanced methods of driver manager are discussed in Chapter 6.

Creating a Connection

Before creating a connection, it is necessary to declare it. It is quite simple; just say that you need a connection object

and name it:

Connection myConnection;

In this example, the connection object is named: myConnection.

To connect to the data source, the connection object must be made. The method that provides this functionality is:

java.sql.DriverManager.getConnection();

The following statement creates a connection object that will send statements to the database. The URL naming
convention is used with the getConnection() method and is the way to specify the data source that is targeted.

String url = “jdbc:odbc:mysource”;
Connection myConnection = DriverManager.getConnection(url, “javauser”,
“hotjava”);

This example shows how to pass the URL string to the driver manager plus specific arguments to the driver itself. In this
case:

• The protocol used is JDBC
• The driver is a JDBC-ODBC bridge
• The ODBC DSN is “mysource”
• A username is provided: “javauser”
• A password is provided: “hotjava”

The driver manager will try to find a registered JDBC driver that is allowed to reach the data source that is specified in
the URL.

There are other methods that allow the user to get a connection to the database. They have the same name, but different
parameters to differentiate these methods.

DriverManager

Connection getConnection(String url);
Connection getConnection(String url, String user, String password);
Connection getConnection(String url, java.util.Properties info);

Connection getConnection(String url);

The getConnection(String url) method does not use specific parameters to provide the user name and password. If
necessary, and if allowed by the specific driver, these values may be passed within the URL string as shown in this
example:

String url = “jdbc:odbc:mysource;UID=javauser;PWD=hotjava”;
Connection myConnection = DriverManager.getConnection(url);
Connection getConnection(String url, String user, String password);

The getConnection(String url, String user, String password) method sends the second and third parameters to the
driver and it usually interprets them as the user name and password to connect to the data source.

Connection getConnection(String url, java.util.Properties info);

In the case of the getConnection(String url, java.util.Properties info) method, the second parameter is a list of
arbitrary string pairs such as “user” and its value, and “password” and its value. These two connection arguments should
be included in the list. The list of such properties should be included in the driver’s documentation. However, it is
preferable to pass as much information as possible within the database URL.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

What we learned so far allows us to begin our first Java stand-alone application. Listing 5-3 shows how to open a
connection.

Listing 5-3: How to open a connection.

// opening a connection
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 try {
 String url = “jdbc:odbc:mysource”;
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 Connection myConnection =
 DriverManager.getConnection(url,
“javauser”, “hotjava”);
 // ...
 } catch (java.lang.Exception ex) {}
 }
}

Closing a Connection

Because we learned how to open a connection, it seems reasonable to learn how to close it before going further.

Connection

void close();
boolean isClosed();
void setAutoClose(boolean autoclose);
boolean getAutoClose();

These methods all apply to a connection instance.

void close();

The close() method simply closes the current connection. Normally, a connection closes automatically when it is
garbage-collected or when certain fatal errors occur. It may, however, be desirable to immediately close a connection
under some circumstances.

boolean isClosed();

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

The isClosed returns true if the connection is closed, and false if it is open.

void setAutoClose(boolean autoclose);

A connection is normally in autoclose mode by default. Because other objects may depend on specific connections (for
example, statements and result sets objects, which are discussed later), it may be necessary to keep a connection open
after a transaction has been committed or rolled back (canceled). The setAutoClose() allows you to disable auto closing.

boolean getAutoClose();

This method returns true in case the connection is in autoclose state, and false in the opposite case. Listing 5-4 shows
how to close a connection.

Listing 5-4: Closing a connection.

// closing a connection
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 try {
 // ...
 String url = “jdbc:odbc:mysource”;
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 // ...
 if (!myConnection.isClosed())
 myConnection.close();
 // ...
 } catch (java.lang.Exception ex) {}
 }
}

Adjusting Properties

It is possible to set and query connection properties that affect the general behavior of commands to be performed within
the connection.

Connection Behavior

The methods available to set and query the connection object are listed below.

Connection

void setReadOnly(boolean readonly);
boolean isReadOnly();
void setCatalog(String catalog);
String getCatalog();
void setReadOnly(boolean readonly);

It may be necessary to put a connection in read-only mode. By default, it is not set as read-only. Setting it in read-only
mode may sometimes be practical and may enable database optimizations where the connection will not be used for
database updates.

boolean isReadOnly();

The return is true if the connection has been set in read-only mode. Use isReadOnly to test the connection mode.

void setCatalog(String catalog);

A catalog is a database subspace containing the database objects affected by the operations performed within the
connection. Some DBMSs manage multiple databases at the same time. It is possible to restrict the subspace to one or
another database using the setCatalog() method. Where the DBMS or the driver associated with the connection does not
support catalogs, this method will silently ignore all calls to it.

String getCatalog();

The getCatalog() method will give the catalog name that is currently in use or a null value. Listing 5-5 shows how to
adjust connection properties.

Listing 5-5: Adjusting connection properties.

// adjusting connection properties
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 try {
 // ...
 String url = “jdbc:odbc:mysource”;
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 if (myConnection.isReadOnly())
 System.out.println(“Connection is read only”);
 myConnection.setReadOnly(true);
 System.out.println(“Default catalog: “ +
 myConnection.getCatalog());
 // use the pubs2 database
 myConnection.setCatalog(“pubs2”);
 // ...
 if (!myConnection.isClosed())
 myConnection.close();
 // ...
 } catch (java.lang.Exception ex) {}
 }
}

Putting It All Together

The essential steps in every Java project that uses JDBC to obtain and terminate a connection to a DBMS are:

• Import java.sql.* to avoid long member names
• Build a JDBC URL
• Load one or more specific JDBC driver with class.forName()
• If necessary, set the JDBC log stream with setLogStream()
• If necessary, adjust the connection properties
• Open a connection with getConnection()
• Terminate the connection with close()

A Do-Nothing Client

The example in Listing 5-6 does nothing but open a connection and close it. The JDBC log stream is set to the standard
output to trace everything that happens.

Listing 5-6: A do-nothing client.

// a do-nothing client
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 String url = “jdbc:odbc:mysource”;
 try
 {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 DriverManager.setLogStream(
 java.lang.System.out);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 myConnection.close();
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }
 }
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Note that code to catch java.lang.Exception is explicitly included. We will see later what this means. For the moment,
just note that the compiler would complain if we do not catch it.

2 errors
compiling: ex.java
ex.java(13): Exception java.lang.ClassNotFoundException must be caught, or it
must be
 declared in the throws clause of this method.
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
^
ex.java(15): Exception java.sql.SQLException must be caught, or it must be
declared in the
 throws clause of this method.
DriverManager.getConnection(url,
^

What happens? The following lines are printed to the JDBC log stream shown in Listing 5-7 during the execution of this
small Java program:

Listing 5-7: JDBC log stream.

DriverManager.getConnection(“jdbc:odbc:mysource”)
trying driver[className=sun.jdbc.odbc.JdbcOdbcDriver,context=null,jdbc.odbc.
JdbcOdbcDriver
 @1393878]
*Driver.connect (jdbc:odbc:mysource)
JDBC to ODBC Bridge: Checking security
No SecurityManager present, assuming trusted application/applet
JDBC to ODBC Bridge 1.0
Current Date/Time: Wed Aug 07 19:42:19 1996
Loading JdbcOdbc library
Allocating Environment handle (SQLAllocEnv)
hEnv=5308508
Allocating Connection handle (SQLAllocConnect)
hDbc=5310680
Connecting (SQLDriverConnect), hDbc=5310680,
 szConnStrIn=DSN=mysource;UID=javauser;PWD=hotjava
RETCODE = 1
getConnection returning driver[className=sun.jdbc.odbc.JdbcOdbcDriver,
context=null,sun.jdbc.odbc.JdbcOdbcDri
 ver@1393878]
*Connection.close
Disconnecting (SQLDisconnect), hDbc=5310680
Closing connection (SQLFreeConnect), hDbc=5310680
Closing environment (SQLFreeEnv), hEnv=5308508

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

The JDBC log is quite long, and we actually did nothing but open and close a connection. It is interesting to see all the
silently performed actions.

Sending SQL Statements

The connection object will send SQL statements to the database engine. There are different methods to perform this,
depending on the kind of operation needed. In this chapter, we focus on sending normal SQL statements. Unlike
prepared statements or calls to stored procedures that are discussed later, normal SQL statements are usually constructed,
sent, and executed only once. This is, for example, the case within an interactive query tool where the user builds his or
her own queries. Normal statements include both statements to query data from the database and statements to update its
data.

Building Statements

The step that directly follows the creation of the connection is the creation of a SQL statement. This does not mean that
it is forbidden to build a SQL query string before opening the connection. You are free to do this. The exact meaning is
that a JDBC statement is an object associated to a connection and it will be used later to request an execution of a SQL
string within this connection environment space in the DBMS.

As shown in Figure 5-3, the step order is very simple.

Figure 5-3: Overview: Building a SQL statement.

Closing the SQL statement releases all the data associated with the statement. Here is the method to build a statement
object.

Connection

Statement createStatement();
Statement createStatement();

The statement object is obtained by calling this method on the connection instance, as shown in Listing 5-8.

Listing 5-8: How to create a statement.

...

...
Connection myConnection = DriverManager.getConnection(url,
 “javauser”, “hotjava”);

javascript:displayWindow('images/05-03.jpg',214,376)
javascript:displayWindow('images/05-03.jpg',214,376)

Statement myStatement = myConnection.createStatement();
myConnection.close();
...
...

Sending Statements

The SQL statement is sent to the DBMS where it is parsed, optimized, and executed. But we have not yet built the
statement text. Indeed, the SQL string passes to the database when the call for execution of the statement is issued, as
shown in Figure 5-4.

Figure 5-4: Sending a SQL statement.

The driver converts this SQL string into the DBMS native SQL grammar. It is possible to see the converted string
without sending it to the database. Usually, you will not use this facility, but sometimes it is necessary to know what the
native translation of a query is prior to sending it.

Connection

String nativeSQL(String sql);

The method applies on the connection object because it is DBMS-dependent. Indeed, a connection is associated to one
and only one DBMS through its driver.

String nativeSQL(String sql);

The string passed as an argument is the “user” SQL statement; nativeSQL() returns the native form of this statement.
Listing 5-9 shows the language to obtain the native SQL translation.

Listing 5-9: Native SQL translation.

...

...
Connection myConnection = DriverManager.getConnection(url,
 “javauser”, “hotjava”);
Statement myStatement = myConnection.createStatement();
String myQuery(“SELECT * FROM employees ORDER BY salary DESCENDING”);
System.out.println(“This query: “ + myQuery);
System.out.println(“is sent to the DBMS as: “ +
 myConnection.nativeSQL(myQuery));
myConnection.close();
...
...

All the previous steps, opening a connection and creating a statement, are necessary before executing a query. None of
them can be skipped. Figure 5-5, while still somewhat simple, shows the current action sequence.

javascript:displayWindow('images/05-04.jpg',500,296)
javascript:displayWindow('images/05-04.jpg',500,296)

Figure 5-5: Overview of sending a SQL statement.

The method chosen to send a SQL statement to the database depends on the type of statement and type of data it returns.

Statement

ResultSet executeQuery(String sql);
int executeUpdate(String sql);
boolean execute(String sql);

ResultSet executeQuery(String sql);

If the query returns normal rows of data, then the executeQuery() should be used. In this case, the query is typically a
static SQL SELECT statement. The SQL text is simply passed as a string argument. It does not have to be translated to
the native form with nativeSQL(). This method returns a result set object that is discussed in the next section of this
chapter.

int executeUpdate(String sql);

If the SQL statement returns nothing [returning nothing is different than returning zero (0) rows] or returns an integer
value, as is the case with SQL INSERT, UPDATE, or DELETE clauses, executeUpdate should be used. The call returns
the integer value or 0 (zero) for statements that return nothing.

boolean execute(String sql);

Previous Table of Contents Next

javascript:displayWindow('images/05-05.jpg',213,379)
javascript:displayWindow('images/05-05.jpg',213,379)

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

When a SQL statement returns more than one result, execute() has to be used to request execution of the statement. The
section on multiple result sets discusses this issue in detail. Listing 5-10 shows how to execute a query.

Listing 5-10: How to execute a query.

// how to execute a query
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 String url = “jdbc:odbc:mysource”;
 try
 {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 DriverManager.setLogStream(
 java.lang.System.out);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 Statement myStatement =
 myConnection.createStatement();
 ResultSet rs = myStatement.executeQuery(
 “SELECT name, id, salary FROM employees ORDER BY” +
 “salary DESC”);
 myConnection.close();
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }
 }
}

The example in Listing 5-11 illustrates the executeUpdate() method:

Listing 5-11: How to perform an update.

// how to execute an update
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 String url = “jdbc:odbc:mysource”;

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

 try
 {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 DriverManager.setLogStream(
 java.lang.System.out);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 Statement myStatement =
 myConnection.createStatement();
 int res = myStatement.executeUpdate(“UPDATE” +
 employees SET salary = salary*1.1 WHERE id = 1”);
 myConnection.close();
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }
 }
}

Closing a Statement

It is often necessary to close explicitly a statement after the DBMS executes it. Indeed, database context and JDBC
statement resources stay open until the connection is closed or the statement is garbage-collected. It is not desirable to
consume resources when there is no reason to do so. Closing the statement also closes the returned result set.

Statement

void close();

void close();

The close() method is simply called on a statement object and takes no arguments.

Sending BLOBs

It is sometimes necessary to send and retrieve pictures, sound, or other multimedia files to a database. This kind of object
is called a Binary Large Object (BLOB). While it has absolutely nothing to do with Java objects [nor C++ or other
object-oriented programming (OOP) language object], BLOB is not restricted to images, sound, and multimedia content.
For example, a multikilobyte or multimegabyte text is also a BLOB. BLOBs do not have to be ASCII or Unicode; they
may be pure binary.

Insertion, update, or retrieval of very large values is usually done by passing the values in small chunks of data. This
approach is often more convenient for programmers. JDBC, however, uses data streams. JDBC provides three kinds of
streams: ASCII streams, Unicode streams, and binary streams.

Because there is no way to send streams within a simple SQL statement, the streams pass as parameters. Refer to the
dynamic SQL section to learn how to send BLOBs to the database.

Adjusting Properties

Properties that change the default behavior of JDBC or of the driver exist. They can be set before sending the SQL
statement to the database.

DATA TRUNCATION WHEN SENDING DATA

Data truncation happens when inserting or updating data in the database. This truncation is dependent on the DBMS and
driver that fixes the maximum size for data types. An error usually happens if the truncation occurs during a database
write. JDBC provides a method to limit the size of a field to a maximum value; if the limit is exceeded, JDBC raises a
SQLException.

Statement

void setMaxFieldSize(int max);
int getMaxFieldSize();

void setMaxFieldSize(int max);

The method setMaxFieldSize() allows the programmer to set a maximum field size that will be valid on the current
statement. The parameter is the number of bytes allowed.

int getMaxFieldSize();

The method getMaxFieldSize() returns the maximum size allowed for the current statement. Listing 5-12 shows data
truncation on write.

Listing 5-12: Data truncation on write.

// data truncation on write
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 String url = “jdbc:odbc:mysource”;
 try
 {
...
...
Connection myConnection =
 DriverManager.getConnection(url, “javauser”, “hotjava”);
Statement myStatement = myConnection.createStatement();
myStatement.setMaxFieldSize(12);
int res = myStatement.executeUpdate(“UPDATE
 employees SET comment = 'The quick br...’ WHERE name=’jones’”);
...
...
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }
 }
}

Time-outs

The execution of a statement may be delayed for one of several reasons. A mechanism called time-out exists so
programmers have a way to handle such situations. The query time-out is the time the JDBC driver will wait for a
statement to execute. If the limit is exceeded, the driver raises an exception. This exception may be caught, and one or
more retries initiated.

Statement

void setQueryTimeout(int seconds);
int getQueryTimeout();

void setQueryTimeout(int seconds);

This is the method used to set a limit to the time-out mechanism. The parameter is the number of seconds it will wait
before raising the SQLException. A zero value means no limit.

int getQueryTimeout();

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

The method getQueryTimeout() returns the number of seconds corresponding to the time-out limit. A zero value also
means there is no limit and that the driver can wait forever if necessary. Listing 5-13 shows time-outs.

Listing 5-13: Time-outs.

// time-outs
...
...
Connection myConnection =
 DriverManager.getConnection(url, “javauser”, “hotjava”);
Statement myStatement = myConnection.createStatement();
// we do not want to wait forever
myStatement.setQueryTimeout(10);
int res = myStatement.executeUpdate(“UPDATE
 employees SET salary = 1000000 WHERE name=’jones’”);
...
...

Another property may prove useful when sending data to the database: the setting for the escape sequence.

Statement

void setEscapeProcessing(boolean enable);

This statement enables or disables escape substitution by the driver. Escape substitution is the default behavior and
occurs before sending the SQL statement to the database. When enabled, the driver translates escape syntax strings to
native SQL (see Chapter 6 on SQL Escape Syntax).

What We Have Done So Far

This section reviews what has been covered thus far.

• Import java.sql.* to avoid having to write long member names
• Build a JDBC URL
• Load one or more specific JDBC driver with class.forName()
• If necessary, set the JDBC log stream with setLogStream()
• If necessary, adjust the connection properties
• Open a connection with getConnection()
• Create a statement object
• Build a SQL statement
• Execute the SQL statement
• Close the statement
• Terminate the connection with close()

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

Example

Here is an example for executing a statement. It sends a SQL query to a database with a time-out value of 180 seconds.
Listing 5-14 shows the code for executing a statement.

Listing 5-14: Executing a statement.

// executing a statement
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 String url = “jdbc:odbc:mysource”;
 try
 {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 DriverManager.setLogStream(
 java.lang.System.out);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 Statement myStatement =
 myConnection.createStatement();
 myStatement.setQueryTimeout(180);
 ResultSet rs = myStatement.executeQuery(
 “SELECT * FROM employees”);
 myStatement.close();
 myConnection.close();
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }
 }
}

Handling Results

A DBMS usually returns results after executing a statement. The results are of different types. The executeQuery()
method returns a result set object, and the executeUpdate() returns an integer. Of course, because the result of the
executeQuery() method will always be used within the program, it would be useless to discard the result of a SQL
query. In the case of an update, the result should also be used, at least to verify that everything happened as expected and
to discover how many rows of data were affected by the update.

Fetchable Result Types

The SQL clauses listed in Table 5-1 return known result types: rows of data and/or integer value.

Table 5-1DIFFERENT STATEMENTS RETURN DIFFERENT RESULT TYPES

Type of SQL statement Type returned

CREATE TABLE employees (...) nothing

SELECT * FROM employees rows and integer

SELECT MAX(salary) FROM employees rows and integer

UPDATE employees SET salary = 70000

WHERE name = “Jones” integer

INSERT INTO employees VALUES (...) integer

DELETE FROM employees

WHERE salary > 150000 integer

In summary, there are two possible result set return types: an integer or a result set composed of rows of table data. Of
course, there are different methods for handling such results, and there is even a way to discover the result type of an
unknown SQL query.

Getting the Result Set

SQL statements that return an integer such as DELETE, UPDATE, and INSERT do not need additional processing. The
method to send them returns an integer and is usually interpreted as a counter. Other SQL statements do not return rows
of data or a counter.

This is not the case with queries that return normal rows of data. The result set will be composed of zero or more rows
coming from the database. The following step scans this result set, row by row, until all rows have been fetched. This
operation is done within a loop, as shown in Figure 5-6. We will see later how to analyze the data that compose rows.

Figure 5-6: Overview of getting the result set.

The result set object is created when sending the statement to the DBMS. It is created by executing the statement object.
Closing the result set releases all data associated with the result set.

Retrieving Rows

Result sets are composed of rows. The ResultSet.next() method is used in the loop to access these rows.

ResultSet

javascript:displayWindow('images/05-06.jpg',268,597)
javascript:displayWindow('images/05-06.jpg',268,597)

boolean next();

Figure 5-7 illustrates the mechanism used to scan the rows in the result set.

Figure 5-7: The next() method is used to scan a result set.

boolean next();

It is important to position the cursor before the first row of the result set. The method next() needs to be called first to
access the first row. After the first call, the first row becomes the current row, and it is ready to be processed. Successive
calls to next() will make the next rows current, row by row, of course. Listing 5-15 shows how to scan a result set.

Listing 5-15: How to scan a result set.

...
Connection myConnection = DriverManager.getConnection(url,
 “javauser”, “hotjava”);
Statement myStatement = myConnection.createStatement();
ResultSet rs = myStatement.executeQuery(sqlQuery);
while (rs.next())
{
 // we got a row
}
myStatement.close();
myConnection.close();
...
...

Previous Table of Contents Next

javascript:displayWindow('images/05-07.jpg',500,160)
javascript:displayWindow('images/05-07.jpg',500,160)

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Getting the Number and Label of Columns

A row is usually composed of table data that may be organized in different columns of different types. It may be
important to discover the properties of the result set’s rows, the number of columns, and the type of data in each column.
We will see later how to get such information about result sets. Only the column number and column labels will be used
now.

ResultSet

int getMetaData().getColumnCount();
String getMetaData().getColumnLabel(int i);

The getMetaData() method returns a ResultSetMetaData object that is explained later because it is quite complex.
Calling getColumnCount() on this object returns the expected value.

int getMetaData().getColumnCount();

The return type is integer and is the number of columns in the rows composing this result set.

String getMetaData().getColumnLabel(int i);

The parameter is the column index where a value of 1 indicates the first column. The method obviously returns the label
for the column at this index.

It may be more efficient to store the ResultSetMetaData object once instead of calling the method to create it each time
it is necessary to access a property. The driver may provide caching, but it is often preferable not to abuse such features
when not really needed. Listing 5-16 shows how to call these methods.

Listing 5-16: Getting the number and label of columns.

...
Connection myConnection = DriverManager.getConnection(url,
 “javauser”, “hotjava”);
Statement myStatement = myConnection.createStatement();
ResultSet rs = myStatement.executeQuery(sqlQuery);
int maxColumns = rs.getMetaData().getColumnCount();
for (int i = 1; i <= maxColumns; i++)
{
 if (i > 1) System.out.print(“, “);
 System.out.print(rs.getMetaData().getColumnLabel(i));
}
System.out.println(“====================================”);

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

while (rs.next())
{
 // we got a row
}
myStatement.close();
myConnection.close();
...
...

Accessing Columns

As shown in Figure 5-8, columns must be fetched one by one, in left-to-right order. Fetching may be done in a loop
using the column indexes or column names discovered by the ResultSetMetaData object.

Figure 5-8: Overview of accessing columns.

The row’s contents are accessible via “getXXX()” methods that allow the extraction of the various values of the
columns of rows in the result set.

There are two ways of accessing columns: by column index or by column name. Accessing a column by name is more
convenient, but less efficient because it internally needs many comparisons of strings before finding the column. Certain
SQL statements return tables without column names or with multiple identical column names. It is absolutely necessary
to use column numbers in these cases. Figure 5-9 illustrates the access to a row’s columns.

Figure 5-9: Accessing columns with getXXX().

All columns within a row must be read in left-to-right order, and each column must only be read once. This rule may not
be true with some DBMSs, but it is preferable to observe it to ensure maximum portability.

By Column Indexes

Below is the list of “getXXX()” methods available to fetch columns in a row:

Result Set

String getString(int columnIndex);
boolean getBoolean(int columnIndex);

javascript:displayWindow('images/05-08.jpg',362,567)
javascript:displayWindow('images/05-08.jpg',362,567)
javascript:displayWindow('images/05-09.jpg',500,240)
javascript:displayWindow('images/05-09.jpg',500,240)

byte getByte(int columnIndex);
short getShort(int columnIndex);
int getInt(int columnIndex);
long getLong(int columnIndex);
float getFloat(int columnIndex);
double getDouble(int columnIndex);
java.math.BigDecimal getBigDecimal(int columnIndex, int scale);
byte[] getBytes(int columnIndex);
java.sql.Date getDate(int columnIndex);
java.sql.Time getTime(int columnIndex);
java.sql.Timestamp getTimestamp(int columnIndex);
java.io.InputStream getAsciiStream(int columnIndex);
java.io.InputStream getUnicodeStream(int columnIndex);
java.io.InputStream getBinaryStream(int columnIndex);
Object getObject(int columnIndex);

return_type getXXX(int columnIndex);

All these methods return the column value in the current row. Column indexes are integers.

This example shows how to execute a SQL statement and retrieve the results using column indexes. Note that the rows
are always read from left-to-right and that columns are only read once. Listing 5-17 shows the statement using column
indexes.

Listing 5-17. Using column indexes.

...
java.sql.Statement myStatement = myConnection.createStatement();
ResultSet rs = myStatement.executeQuery(“SELECT name, title, salary
 FROM employees”);
while (rs.next()) {
 // print the columns of the row that was retrieved
 String empName = rs.getString(1);
 String empTitle = rs.getString(2);
 long empSalary = rs.getLong(3);
 System.out.println(“Employee “ + empName + “ is “ + empTitle + “
 and earns $” + empSalary);
}
...
...

By Column Names

Column names may be more convenient to use. Here are the “getXXX()” methods supporting column names:

ResultSet

String getString(String columnName);
boolean getBoolean(String columnName);
byte getByte(String columnName);
short getShort(String columnName);
int getInt(String columnName);
long getLong(String columnName);
float getFloat(String columnName);
double getDouble(String columnName);

java.math.BigDecimal getBigDecimal(String columnName, int scale);
byte[] getBytes(String columnName);
java.sql.Date getDate(String columnName);
java.sql.Time getTime(String columnName);
java.sql.Timestamp getTimestamp(String columnName);
java.io.InputStream getAsciiStream(String columnName);
java.io.InputStream getUnicodeStream(String columnName);
java.io.InputStream getBinaryStream(String columnName);
Object getObject(String columnName);

return_type getXXX(String columnName);

The parameter should match exactly with the row’s column name that needs to be accessed.

The same example using column names is shown in Listing 5-18.

Listing 5-18: Using column names.

...
java.sql.Statement myStatement =
 myConnection.createStatement();
ResultSet rs = myStatement.executeQuery(“SELECT name, title, salary FROM
employees”);
while (rs.next()) {
// print the columns of the row that was retrieved
String empName = rs.getString(“name”);
String empTitle = rs.getString(“title”);
long empSalary = rs.getLong(“salary”);
System.out.println(“Employee “ + empName + “ is “ + empTitle + “ and earns $” +
 empSalary);
}
...
...

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Managing multiple result types

As discussed earlier, the methods that send SQL queries and SQL updates are different. SQL queries return result sets;
SQL updates return a count of the rows updated. SQL statements will normally execute using query and update methods.
However, under some circumstances, it may be difficult to estimate the type of result. An application may not know
whether a given SQL statement will return a result set or a counter until the statement executes, as, for example, in the
case of an interactive query tool or when calling an unknown stored procedure.

A mechanism is provided to accommodate these needs. It allows an application to execute statements and then process
an arbitrary collection of sets of rows and single update counts. Figure 5-10 gives an idea of the steps performed in this
scenario.

Figure 5-10: Overview of managing multiple result types.

How is it possible to distinguish the difference between return types? The following methods give the answer.

Statement:

boolean execute(String sql);
ResultSet getResultSet();
int getUpdateCount();
boolean getMoreResults();

boolean execute(String sql);

The SQL string passed as parameter to this method is a statement that may return multiple results or a statement whose
return type is unknown in advance, programmatically speaking. It gives an indication on the form of the result or of the
first result, in case multiple results are returned. It will return true if a result set is available or false if it is an integer such
as an update count.

ResultSet getResultSet();

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
javascript:displayWindow('images/05-10.jpg',469,644)
javascript:displayWindow('images/05-10.jpg',469,644)

The method getResultSet() returns the current result as a ResultSet. It may only be called once per result. The result set
is then scanned by the usual method. This method may also be used to verify that the current result is a result set, in
which case it does not return null. A null return means that there are no more results or the result is an update count, in
which case it should be fetched with the getUpdateCount() method.

int getUpdateCount();

The method getUpdateCount() returns the current result, which should be an integer value, or -1 if it is a result set or if
there are no more results. It should be called only once per result.

boolean getMoreResults();

This method moves to a statement’s next result. In case it is a result set, it returns true. It returns false if it is an integer or
there are no more results. This method implicitly closes a current result set obtained with getResultSet().

There are no more results when (!getMoreResults() && (getUpdateCount() == -1)).

Listing 5-19 best illustrates the mechanism.

Listing 5-19: How to discover the result type.

...
Connection myConnection = DriverManager.getConnection(url,
 “javauser”, “hotjava”);
Statement myStatement = myConnection.createStatement();
ResultSet rs;
if (myStatement.execute(sqlStatement))
{
 // we have a ResultSet
 rs = myStatement.getResultSet();
 while (rs.next())
 {
 // process the rows
 }
}
else
{
 // we have an update count
 System.out.println(myStatement.getUpdateCount());
}
myStatement.close();
myConnection.close();
...
...

The example in Listing 5-20 is adapted to process the results of a statement that returns multiple results — both result
sets and update counts in arbitrary order.

Listing 5-20: How to handle multiple result types.

...

...
Connection myConnection = DriverManager.getConnection(url,

 “javauser”, “hotjava”);
Statement myStatement = myConnection.createStatement();
boolean resultSetIsAvailable;
boolean moreResultsAvailable;
int i = 0;
int res=0;
resultSetIsAvailable = myStatement.execute(sqlText);
ResultSet rs = null;
for (moreResultsAvailable = true; moreResultsAvailable;)
{
 if (resultSetIsAvailable)
 {
 if ((rs = myStatement.getResultSet()) != null)
 {
 // we have a resultset
 ResultSetMetaData rsmd = rs.getMetaData();
 int numCols = rsmd.getColumnCount();
 // display column headers
 for (i = 1; i <= numCols; i++)
 {
 if (i > 1) System.out.print(“, “);
 System.out.print(
 rsmd.getColumnLabel(i));
 }
 System.out.println(“”);
 // step through the rows
 while (rs.next())
 {
 // process the columns
 for (i = 1; i <= numCols; i++)
 {
 if (i > 1)
 System.out.print(“, “);
 System.out.print(
 rs.getString(i));
 }
 System.out.println(“”);
 }
 }
 }
 else
 {
 if ((res = curStmt.getUpdateCount()) != -1)
 {
 // we have an updatecount
 System.out.println(res + “ row(s) affected.”);
 }
 // else no more results
 else
 {
 moreResultsAvailable = false;
 }
 }
 if (moreResultsAvailable)
 {
 resultSetIsAvailable = myStatement.getMoreResults();
 }
}
if (rs != null) rs.close();

myStatement.close();
...
...

Canceling unwanted results

It may happen that a statement’s result is no longer needed for one or another reason. In this case, closing the result set
will usually be sufficient (see the close() method). However, a cancel() method exists and may be called on the
statement object. It may be called from a thread to cancel a statement being executed within another thread.

Statement:

void cancel();

void cancel();

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

This method, shown in Listing 5-21, cancels a statement being executed.

Listing 5-21: Canceling unwanted results.

...
java.sql.Statement myStatement =
 myConnection.createStatement();
ResultSet rs = myStatement.executeQuery(“SELECT name, title, salary FROM
employees”);
int i = 0;
while (rs.next()) {
 // increment the counter
 i++;
 // print the columns of the row that was retrieved
 String empName = rs.getString(“name”);
 String empTitle = rs.getString(“title”);
 long empSalary = rs.getLong(“salary”);
 System.out.println(“Employee “ + empName + “ is “ + empTitle + “
 and earns $” + empSalary);
 // cancel all results if 100 rows of data were already
 // retrieved
 if (i >= 100) myStatement.cancel();
}
...
...

Closing the result

As in the case with statements and connections, result sets must be closed when no longer needed.

ResultSet:

void close();

void close();

This method closes the result set and releases database and JDBC resources associated with it. When a statement object
is closed, re-executed, or used to retrieve the next result of multiple result sets, its result set is automatically closed.

Type Conversion

Depending on the situation, it may be necessary to perform automatic conversions between SQL types used in a specific
result set column and Java types. For example, it is allowed to use getString() to access an element of SQL type DATE.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

The short example in Listing 5-22 shows how to force a conversion of SQL type DATE to Java String.

Listing 5-22: Type conversion.

...
java.sql.Statement myStatement = myConnection.createStatement();
ResultSet rs = myStatement.executeQuery(“SELECT name, datehired, salary FROM
 employees”);
while (rs.next()) {
 // print the values of the row that was retrieved
 String empName = rs.getString(“name”);
 String empDateHired = rs.getString(“datehired”);
 long empSalary = rs.getLong(“salary”);
 System.out.println(“Employee “ + empName + “ was hired on the “ +
 empDateHired + “ and earns $” + empSalary);
}
...
...

Table 5-2 shows the supported conversions via the getXXX() methods. Unsupported conversions will usually raise a
SQLException when attempted.

Table 5-2JAVA TO SQL TYPES CONVERSIONS

TINYINT SMALLINT INTEGER BIGINT REAL FLOAT

getByte() J K K K K K

getShort() K J K K K K

getInt() K K J K K K

getLong() K K K J K K

getFloat() K K K K J K

getDouble() K K K K K J

getBigDecimal() K K K K K K

getBoolean() K K K K K K

getString() K K K K K K

getBytes()

getDate()

getTime()

getTimestamp()

getAsciiStream()

getUnicodeStream()

getBinaryStream()

getObject() K K K K K K

DOUBLE DECIMAL NUMERIC BIT CHAR VARCHAR

getByte() K K K K K K

getShort() K K K K K K

getInt() K K K K K K

getLong() K K K K K K

getFloat() K K K K K K

getDouble() J K K K K K

getBigDecimal() K J J K K K

getBoolean() K K K J K K

getString() K K K K J J

getBytes()

getDate() K K

getTime() K K

getTimestamp() K K

getAsciiStream() K K

getUnicodeStream() K K

getBinaryStream()

getObject() K K K K K K

LONGVARCHAR BINARY VARBINARY LONGVARBINARY

getByte() K

getShort() K

getInt() K

getLong() K

getFloat() K

getDouble() K

getBigDecimal() K

getBoolean() K

getString() K K K K

getBytes() J J K

getDate() K

getTime() K

getTimestamp() K

getAsciiStream() J K K K

getUnicodeStream() J K K K

getBinaryStream() K K J

getObject() K K K K

DATE TIME TIME STAMP

getByte()

getShort()

getInt()

getLong()

getFloat()

getDouble()

getBigDecimal()

getBoolean()

getString() K K K

getBytes()

getDate() J K

getTime() J K

getTimestamp() K J

getAsciiStream()

getUnicodeStream()

getBinaryStream()

getObject() K K K

A J means the corresponding method is recommended. A K means the corresponding get method can be used.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Note that it may be convenient to convert all SQL types to string when retrieving data to display it in tabular format. The
getString() method accepts any type and will always do the implicit conversion to a Java string. Chapter 6 provides
more information on SQL data types and Java types.

Receiving BLOBs

Retrieving pictures, sounds, and movies from a database is an expected JDBC function. It makes sense in the context of
applets delivered via Web pages, but because Java has a fair set of multimedia facilities, it makes sense in stand-alone
Java applications as well.

As for sending such binary large objects, Java streams are used to retrieve LONGVARBINARY or LONGVARCHAR
data. However, the possibility exists to retrieve the data in fixed-size chunks. The limits are imposed by the Statement.
getMaxFieldSize() value. Another limitation due to underlying implementation constraints is that each stream must be
accessed immediately after the get method. Indeed, they will be closed on successive get calls on the result set.

Three separate methods support the retrieval of streams:

• getBinaryStream(), which does not perform any conversion
• getAsciiStream(), which returns a stream providing one-byte wide ASCII characters
• getUnicodeStream(), which returns a stream providing two-byte wide Unicode characters

These methods were listed in the earlier section describing how to scan the row’s columns of a result set. Listing 5-23
shows how to retrieve binary large objects from a database. The fields containing a BLOB are emp_pict and
emp_welcome.

Listing 5-23: How to retrieve BLOBs.

...
java.sql.Statement myStatement = myConnection.createStatement();
ResultSet rs = myStatement.executeQuery(“SELECT name, emp_pict, emp_welcome FROM
employees”);
// we retrieve in 4K chunks
byte[] buffer = new byte[4096];
int size;
while (rs.next()) {
 // fetch employee’s name
 String empName = rs.getString(“name”);
 // fetch employee’s picture
 java.io.InputStream strin =
 rs.getBinaryStream(“emp_pict”);
 for (;;)
 {
 size = strin.read(buffer);

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

 if (size == 0)
 {
 break;
 }
 // Send the buffer to some output stream
 output.write(buffer, 0, size);
}
 // fetch employee’s voicemail welcome message
 java.io.InputStream strin2 =
 rs.getBinaryStream(“emp_welcome”);
 for (;;)
{
 size = strin2.read(buffer);
 if (size == 0)
 {
 break;
 }
 // Send the buffer to some output stream
 output.write(buffer, 0, size);
 }
}
...
...

Adjusting properties

Properties that affect result sets may be set or queried through various methods. Always verify that the settings are as
independent of the data source as possible.

Data truncation on reads: Data truncation may happen when reading data from a database. How it is handled depends
on the circumstances. Normally, data truncation results in a warning. However, if the maximum field size is set to a
certain value, and if the application attempts to read a field larger than the limit, the data will be silently truncated to the
maximum limit. As a reminder, the setMaxFieldSize() and getMaxFieldSize() were explained in the section on
sending SQL statements. Listing 5-24 shows data truncation on reads.

Statement:

void setMaxFieldSize(int max);
int getMaxFieldSize();

Listing 5-24: Data truncation on reads.

...
java.sql.Statement myStatement =
 myConnection.createStatement();
ResultSet rs = myStatement.executeQuery(“SELECT name, title, salary FROM
employees”);
myStatement.setMaxFieldSize(128);
while (rs.next()) {
 // print the columns of the row that was retrieved
 String empName = rs.getString(“name”);
 String empTitle = rs.getString(“title”);
 long empSalary = rs.getLong(“salary”);
 System.out.println(“Employee “ + empName + “ is “ +
 empTitle + “ and earns $” + empSalary);
}

...

...

Limiting the number of rows: Under some circumstances, it may not be useful or preferable to retrieve millions of
rows of data. One such circumstance is, for example, if the data destination is the user’s screen. While you should always
build and send queries that make sense to be able to exploit their result, it may happen that the number of returned rows
is unpredictable. In this case, it is possible to set a limit.

Statement:

void setMaxRows(int max);
int getMaxRows();

void setMaxRows(int max);

This code sets the maximum limit to max. In other words, max is the maximum number of rows that a result set may
contain. If the limit is exceeded, the excess rows will be silently dropped from the result set.

int getMaxRows();

This code returns the current value of the limit. A value of zero means no limit at all. Listing 5-25 shows how to limit the
number of rows returned by a query.

Listing 5-25: Limiting the number of rows returned by a query.

...

...
java.sql.Statement myStatement =
 myConnection.createStatement();
ResultSet rs = myStatement.executeQuery(“SELECT name, title, salary FROM
employees”);
// we do not want more than 1000 rows of data retrieved
myStatement.setMaxRows(1000);
while (rs.next()) {
 // print the columns of the row that was retrieved
 String empName = rs.getString(“name”);
 String empTitle = rs.getString(“title”);
 long empSalary = rs.getLong(“salary”);
 System.out.println(“Employee “ + empName + “ is “ +
 empTitle + “ and earns $” + empSalary);
}
...
...

Examining the results: The next two methods are useful for examining and navigating through a resulting row of data.

ResultSet:

boolean wasNull();
int findColumn(String columnName);

boolean wasNull();

In case a column has the value of SQL NULL, this method returns true. Note that it should be called after calling the

getXXX() method to access the column.

int findColumn(String columnName);

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

This method attempts to find the index of the column name passed in a parameter. It returns the column index as an
integer. Listing 5-26 shows how to examine the columns of a result set.

Listing 5-26: Examining the columns of a result set.

...

...
java.sql.Statement myStatement =
 myConnection.createStatement();
ResultSet rs = myStatement.executeQuery(“SELECT name, title, salary FROM
employees”);
while (rs.next()) {
 // print the columns of the row that was retrieved
 String empName = rs.getString(“name”);
 if rs.wasNull() System.out.println(“Ooops, column “ +
 rs.findColumn(“name”) + “ is NULL!”);
 String empTitle = rs.getString(“title”);
 if rs.wasNull() System.out.println(“Ooops, column “ +
 rs.findColumn(“title”) + “ is NULL!”);
 long empSalary = rs.getLong(“salary”);
 if rs.wasNull() System.out.println(“Ooops, column “ +
 rs.findColumn(“salary”) + “ is NULL!”);
 System.out.println(“Employee “ + empName + “ is “ +
 empTitle + “ and earns $” + empSalary);
}
...
...

SQL cursor

Cursors are often used when programming database applications. They offer a practical way of scanning the result sets
and perform positioned delete and updates.

Result Set:

String getCursorName();

String getCursorName();

When a result table is retrieved, a named cursor is created. This cursor is used when stepping through the result set rows
and may be used to update or delete data pointed to by the cursor. It is called positioned update/positioned delete. JDBC
supports this feature by giving the name of the SQL cursor used by a result set. Note that if positioned update/delete is
not supported by the DBMS, a SQLException will be thrown.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

Putting It All Together Again

Figure 5-11 summarizes all the steps we studied in this chapter. They are the essential steps for communicating with a
database, sending queries and updates, and retrieving the results from Java. Listing 5-27 also summarizes this chapter.

Figure 5-11: Overview of all the steps for communicating with a database.

Listing 5-27: Retrieving results.

// retrieving results
// the SQL statement is taken from the standard input
import java.sql.*;
import java.io.*;
class SimpleExample
{
 public static void main(String argv[])
 {
 String url = “jdbc:odbc:mysource”;
 try
 {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 DriverManager.setLogStream(java.lang.System.out);
 Connection myConnection =
 DriverManager.getConnection(url, “javauser”, “hotjava”);
 Statement myStatement = myConnection.createStatement();
 boolean resultSetIsAvailable;
 boolean moreResultsAvailable;
 int i = 0;
 int res=0;
 String sqlText = (new DataInputStream(System.in)).readLine();
 resultSetIsAvailable = myStatement.execute(sqlText);
 ResultSet rs = null;
 for (moreResultsAvailable = true; moreResultsAvailable;)
 {
 if (resultSetIsAvailable)
 {
 if ((rs = myStatement.getResultSet()) != null)
 {
 // we have a resultset
 ResultSetMetaData rsmd =
 rs.getMetaData();

javascript:displayWindow('images/05-11.jpg',477,917)
javascript:displayWindow('images/05-11.jpg',477,917)

 int numCols = rsmd.getColumnCount();
 // display column headers
 for (i = 1; i <= numCols; i++)
 {
 if (i > 1) System.out.print
(“,
 “);
 System.out.print(
 rsmd.getColumnLabel(i));
 }
 System.out.println(“”);
 // step through the rows
 while (rs.next())
 {
 // process the columns
 for (i = 1; i <= numCols; i+
+)
 {
 if (i > 1)
 System.out.print(“,
“);
 System.out.print(
 rs.getString(i));
 }
System.out.println(“”);
 }
 }
 }
 else
 {
 if ((res = myStatement.getUpdateCount()) != -1)
 {
 // we have an updatecount
 System.out.println(res +
 “
row(s) affected.”);
 }
 // else no more results
 else
 {
 moreResultsAvailable = false;
 }
 }if
 (moreResultsAvailable)
 {
 resultSetIsAvailable =
 myStatement.getMoreResults();
 }
 }
 if (rs != null) rs.close();
 myStatement.close();
 myConnection.close();
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }
}

Error and Warning Management

JDBC uses the exception mechanism to pass error or warning information to programs. This mechanism signals an
abnormal condition that may be handled to prevent a program termination. The exception mechanism is used when a
recoverable error occurs and it must be caught to correct the situation.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

SQLException

When a database access error occurs, a SQLException is thrown that provides information on the error. Each
SQLException provides several kinds of information:

• A description of the error, used as the Java Exception message
• A SQLstate string conforms to the XOPEN SQLstate conventions
• A vendor-specific error code, usually the actual DBMS error code
• A chain to a next exception, if any

The following methods may be used within a program on a SQLException object.

SQLException

String getMessage();
String getSQLState();
int getErrorCode();
SQLException getNextException();

String getMessage();

The message is used as the Java exception message, is available via this method, and is returned as string.

String getSQLState();

The code getSQLstate conforms to the XOPEN SQLstate definition.

int getErrorCode();

This code returns the vendor specific exception code. You should refer to the documentation for more information.

SQLException getNextException();

This method is used to get the SQLException chained to this one.

In all our examples, we were able to catch SQLExceptions without doing anything special once we caught them. The
next example, Listing 5-28, shows how to use exception information. Because exceptions signal an abnormal condition,
you use the provided information to try to continue the program execution.

Listing 5-28: Catching SQLExceptions.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

// catching SQLExceptions
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 String url = “jdbc:odbc:mysource”;
 try
 {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 DriverManager.setLogStream(
 java.lang.System.out);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 Statement myStatement =
 myConnection.createStatement();
 ResultSet rs = myStatement.executeQuery(
 “SELECT * FROM employees”);
 // ...
 myStatement.close();
 myConnection.close();
 }
 catch(SQLException ex)
 {
 // there may be multiple error objects
 // chained together
 System.out.println(“\n*** SQLException caught ***\n”);
 while (ex != null)
 {
 System.out.println(“SQLState: “ +
 ex.getSQLState());
 System.out.println(“Message: “ +
 ex.getMessage());
 System.out.println(“Vendor Code: “ +
 ex.getErrorCode());
 System.out.println(“”);
 ex.getNextException();
 }
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }
 }
}

SQLWarning

This class provides information on database access warnings. Such warnings are silently chained to the class instance
whose method caused it to be reported until they are fetched with the following method.

Connection, statement, or result set

SQLWarning getWarnings();

SQLWarning getWarnings();

This method returns a SQLWarning object or null if no warning occurred.

The SQLWarning class, that extends SQLException, provides:

SQLWarning

String getMessage();
String getSQLState();
int getErrorCode();
SQLWarning getNextWarning();

String getMessage();

The warning message is available via this method, returned as string.

String getSQLState();

The code getSQLstate conforms to the XOPEN SQLstate definition.

int getErrorCode();

This code returns the vendor-specific warning code. Refer to the vendor’s documentation for more information.

SQLException getNextWarning();

This method is used to get the SQLWarning chained to this one.

The following example, Listing 5-29, shows how to check for warnings. We explicitly call the getWarnings() method
on the Connection, statement, and result set objects. The code for checkWarnings() is a generic method to handle all
warnings that may occur during the program execution.

Listing 5-29: Checking SQLWarnings.

// checking SQLWarnings
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 String url = “jdbc:odbc:mysource”;
 try
 {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 DriverManager.setLogStream(
 java.lang.System.out);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 checkWarnings(myConnection.getWarnings());
 Statement myStatement =
 myConnection.createStatement();
 checkWarnings(myStatement.getWarnings());

 ResultSet rs = myStatement.executeQuery(
 “SELECT * FROM employees”);
 checkWarnings(rs.getWarnings());
 // ...
 myStatement.close();
 myConnection.close();
 }
 catch(SQLException ex)
 {
 // there may be multiple error objects
 // chained together
 System.out.println(“\n*** SQLException caught ***\n”);
 while (ex != null)
 {
 System.out.println(“SQLState: “ +
 ex.getSQLState());
 System.out.println(“Message: “ +
 ex.getMessage());
 System.out.println(“Vendor Code: “ +
 ex.getErrorCode());
 System.out.println(“”);
 ex.getNextException();
 }
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }
 }
 private static void checkWarnings(SQLWarning warn)
 throws SQLException
 {
 if (warn != null)
 {
 // there may be multiple warnings chained
 // together
 System.out.println(“\n*** SQLWarning caught ***\n”);
 while (warn != null)
 {
 System.out.println(“SQLState: “ +
 warn.getSQLState());
 System.out.println(“Message: “ +
 warn.getMessage());
 System.out.println(“Vendor Code: “ +
 warn.getErrorCode());
 System.out.println(“”);
 warn.getNextWarning();
 }
 }
 }
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Data Truncation

When JDBC unexpectedly truncates data on a read, a data truncation warning is reported. When it occurs on a write, a
data truncation exception is thrown. In both cases, the SQLstate is set to “01004.”

A set of methods is available to discover what happened.

DataTruncation

int getDataSize();
int getTransferSize();
int getIndex();
boolean getParameter();
boolean getRead();

int getDataSize();

This method returns the number of bytes that should have been transferred. It returns -1 if the size is unknown. The size
may be an approximation if data conversions occurred.

int getTransferSize();

This method returns the number of bytes actually transferred. A -1 means that the size is unknown.

int getIndex();

This method gets the index of the column or parameter that was truncated. A -1 means that the index is unknown, in
which case the next two methods should be ignored.

boolean getParameter();

This returns true if the value truncated was passed through a statement’s parameter. It returns false if it was returned by a
column.

boolean getRead();

This returns true if the data truncation occurred on a database read. It returns false if the data was truncated on a write.
Listing 5-30 shows how to catch a data truncation exception.

Listing 5-30: How to catch a data truncation exception.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

...

...
 {
 try
 {
 // initiate a connection,
 // then execute a statement
 // ...
 }
 catch(DataTruncation ex)
 {
 System.out.println(“\n*** DataTruncationexception caught ***\n”);
 int idx = ex.getIndex();
 System.out.print(“Index: “ + idx);
 if (idx != -1)
 {
 if (ex.getParameter())
 {
 // the truncation happened
 // in a parameter
 System.out.print(“ of the set
 of parameters”);
 }
 else
 {
 // the truncation happened
 // on a resultset column
 System.out.print(“ in the resultset”);
 }
 }
 if (ex.getRead())
 {
 // the truncation happened
 // on a read
 System.out.println(“ was truncated on a read”);
 }
 else
 {
 // the truncation happened
 // on a write
 System.out.println(“ was truncated on a write”);
 }
 System.out.println(“It was: “ +
 ex.getDataSize() + “ bytes long”);
 System.out.println(“Actual size: “ +
 ex.getTransferSize() +
 “ bytes transferred”);
 System.out.println(“”);
 }
 // ...
 }
...
...

Summary

In this chapter, you learned how to:

• Import java.sql.* to avoid long member names
• Build a JDBC URL
• Load one or more specific JDBC driver with class.forName()
• If necessary, set the JDBC log stream with setLogStream()
• If necessary, adjust the connection properties
• Open a connection with getConnection()
• Create a statement object
• Build a SQL statement
• Execute the SQL statement
• Manage multiple result sets
• Fetch rows of data in cases of result set of rows
• Fetch columns of rows by column name or column index
• Fetch integer results
• Check for warnings
• Manage data truncation errors
• Close the result set
• Close the statement
• Terminate the connection with close()
• Catch exceptions

The next chapter discusses data type conversions, how to use the SQL escape syntax, what a database transaction is,
some theory, and provides exercises on SQL cursors.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Chapter 6
Fine Tuning JDBC Queries and Updates

In This Chapter

This chapter discusses the essential techniques for fine-tuning database queries and updates from JDBC, including:

• Dealing with data type conversion
• The SQL escape syntax
• Database transactions
• Handling SQL cursors

Driver and DriverManager Internals

It is possible to obtain detailed information from the Driver and the DriverManager through a set of methods. They are
advanced functions, and a programmer usually will not use Driver or DriveManager unless the programmer wants to
discover or set specific JDBC behaviors. Only those functions that are of the most interest to an application developer
are listed below, the others being more useful for JDBC driver developers.

DriverManager:

void setLoginTimeout(int seconds);
int getLoginTimeout();
void setLogStream(java.io.PrintStream out);
java.io.PrintStream getLogStream();
void println(String logmessage);

void setLoginTimeout(int seconds);

This method sets the maximum time allowed when attempting to log in to a database. All registered JDBC drivers use
the timeout value, expressed in seconds. It may be useful to modify this parameter in the case of the Internet scenario.
An exception occurs whenever the timer expires.

int getLoginTimeout();

The method getLoginTimeout() returns the current timeout value.

void setLogStream(java.io.PrintStream out);

The JDBC logging facility was used in previous examples. It allows the tracing of all JDBC activity during program
execution by providing a PrintStream. Once the log stream has been set, the tracing facility can be disabled by providing

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

a null parameter to the same method.

java.io.PrintStream getLogStream();

The method getLogStream() returns the current JDBC logging PrintStream, or null if logging is disabled.

void println(String logmessage);

This method is used on the DriverManager object to print a message on the current JDBC log stream. The
DriverManager is very talkative, and this facility may be useful for inserting your own messages in the log stream, as,
for example, before all critical sections of a program to facilitate debugging.

Driver:

boolean acceptsURL(String url);
int getMajorVersion();
int getMinorVersion();
boolean jdbcCompliant();
DriverPropertyInfo[] getPropertyInfo(String url, java.util.Properties info);

boolean acceptsURL(String url);

In some cases, it may be of interest to know if a particular driver is able to connect to the given Uniform Resource
Locator (URL). This method will return true if the driver is able to understand the subprotocol specified in the URL.

int getMajorVersion();

This method returns the driver’s major version number.

int getMinorVersion();

This method returns the driver’s minor version number.

boolean jdbcCompliant();

In case the driver fully supports the JDBC API and SQL 92 Entry Level, this method returns true. It is a good way to
verify that a driver is JDBC compliant.

// getting driver info
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 try
 {
 Driver myDriver = new jdbc.foobar.MyDriver();
 DriverManager.registerDriver(myDriver);
 DriverManager.setLogStream(
 java.lang.System.out);
 System.out.println(“Connection to” +
 “jdbc:mydriver://javabank.com/ possible? “ +
 myDriver.acceptsURL (“jdbc:mydriver://javabank.com/”));

 System.out.println(“Major Version: “ +
 myDriver.getMajorVersion());
 System.out.println(“Minor Version: “ +
 myDriver.getMinorVersion());
 System.out.println(“JDBC COMPLIANT driver? “
 + myDriver.jdbcCompliant());
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }
 }
}

DriverPropertyInfo[] getPropertyInfo(String url, java.util.Properties info);

This method returns an array of DriverPropertyInfo objects describing the driver’s possible properties. It takes the URL
as an argument as well as a proposed list of property name/value pairs that will be sent to open the connection. An empty
array is returned when no properties are required.

The getPropertyInfo() method is used to discover what properties should be provided to make a connection to a
database. It could, for example, be used within a generic graphical user interface (GUI) tool that has no prior knowledge
about the properties it should prompt a user for to get the connection. The DriverPropertyInfo objects should be
analyzed to discover the possible properties, both those that are required and those that are optional. It may be necessary
to iterate through several calls to the getPropertyInfo() method because additional property values may become
necessary, as soon as the values are supplied.

The DriverPropertyInfo class is composed of these members:

DriverPropertyInfo:

String DriverPropertyInfo.name;
String DriverPropertyInfo.description;
boolean DriverPropertyInfo.required;
String DriverPropertyInfo.value;
String[] DriverPropertyInfo.choices;

String DriverPropertyInfo.name;

This is the name of the property.

String DriverPropertyInfo.description;

This gives a description of the property. It may be null.

boolean DriverPropertyInfo.required;

This result is set to true if a value must be supplied to the property during a Driver.connect(). False means that the
property is optional.

String DriverPropertyInfo.value;

This field is the current value of the property, or null if no value is known.

String[] DriverPropertyInfo.choices;

If the property may be chosen from a set of values, this array contains the possible choices.

SQL Data Type Conversions

The Java data types are not exactly isomorphic to the SQL data types. However, mapping SQL data types into Java
allows users to store and retrieve data without losing information.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Mapping Data Types to Java

When types are known at compile time, the following mappings are used. Note that JDBC also provides a mechanism to
fully support dynamically typed data access when result and parameter types are not known at compile time (see the
Dynamic Database Access section).

Character Strings

There are three SQL data types for SQL strings:

• CHAR
• VARCHAR
• LONGVARCHAR

In Java, we have String and char[] types to hold these SQL data types. String is used as the default mapping, knowing
that it is possible to convert a String to a char[] and a char[] to a String. Thus, reading and writing data may be
achieved without knowing the exact data type expected.

Space padding is automatically done whenever dealing with fixed length types such as SQL CHAR(n). Spaces are added
to the end of a string to set its length to “n” when a SQL CHAR(n) must be sent to the database. When a SQL CHAR(n)
field is retrieved, additional padding is done to get a string of length “n.”

Note that a LONGVARCHAR may overflow a string when retrieved using ResultSet.getString(). In this case, it is
advised to retrieve the LONGVARCHAR field in small chunks using a Java input stream. This may occur when
retrieving BLOBs (Binary Long Objects) from the database.

Numbers

SQL integer types allow for 1-(TINYINT), 2-(SMALLINT), 4-(INTEGER), and 8 byte-wide values (BIGINT). They
can, therefore, be mapped to Java types such as Java byte, short, int, and long respectively.

Fixed point numbers may be expressed as SQL DECIMAL and SQL NUMERIC, where absolute precision is preserved.
They can be mapped to java.math.BigDecimal without losing precision. This type may be used to perform addition,
subtraction, multiplication, and division. Note that these SQL types may also be accessed as Java strings, although it is
difficult to perform math on strings.

Floating point numbers are mapped as follows: SQL REAL, which requires 7 digits of mantissa precision, to Java float,
SQL FLOAT, and SQL DOUBLE, which require 15 digits of mantissa precision, to Java double.

Binary Types

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

SQL types BINARY, VARBINARY, and LONGVARBINARY may be expressed as byte arrays in Java. As for
LONGVARCHAR fields, LONGVARBINARY fields may be retrieved using Java streams for multimegabyte data
values.

The SQL BIT data type may be mapped to the Java boolean type.

Time-Related Types

The SQL DATE, TIME, and TIMESTAMP data types are time-related types. They can be expressed as java.sql.Date
(yyyy-mm-dd), java.sql.Time (hh:mm:ss), and java.sql.Timestamp (yyyy-mm-dd hh:mm:ss.nanosecond), respectively.

Note that java.sql.Date, java.sql.Time, and java.sql.Timestamp are three subclasses of java.util.date. Depending on
which one is in use, different java.util.date members are affected. These subclasses include:

• java.sql.Date sets the java.util.date.hour, .minute, .second, and .milliseconds fields to zero
• java.sql.Time sets the java.util.date.year, .month, and .day fields according to 1970, January 1st
• java.sql.Timestamp has a similar behavior but also sets a nanosecond field

Type Mapping Tables

Table 6-1 shows the standard mapping from SQL data types to Java types. Although they are common SQL data types,
some databases may not support them.

Table 6-1MAPPING TABLE FROM SQL TYPES TO JAVA TYPES

SQL type Java type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

SQL type Java type

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

SQL type Java type

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

Table 6-2 shows the default mapping from Java types to SQL data types. The mapping from String is normally
VARCHAR. Where the String length exceeds the drivers limit on VARCHAR values, it becomes LONGVARCHAR.
The same occurs with byte[] and VARBINARY and LONGVARBINARY.

Table 6-2MAPPING TABLE FROM JAVA TYPES TO SQL TYPES

Java type SQL type

String VARCHAR or LONGVARCHAR

java.math.BigDecimal NUMERIC

boolean BIT

byte TINYINT

short SMALLINT

int INTEGER

long BIGINT

float REAL

double DOUBLE

byte[] VARBINARY or LONGVARBINARY

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

SQL Escape Syntax

To be JDBC-compliant, a database driver must support both SQL-2 entry level and semantics for some parts of the ANSI
SQL-2 transitional level. Because the syntax used for this level is often different across DBMSs, JDBC provides an
escape syntax for these semantics. The JDBC drivers convert the escape syntax into a DBMS-specific syntax, allowing
portability of programs that require these features.

Escape Syntax

The escape syntax is the same as the escape syntax of Open Database Connectivity (ODBC). The escape syntax may not
be the same as the ANSI syntax. Its form is:

{keyword parameters}

For Stored Procedures

The following escape syntax is adopted to call stored procedures. The “?=” may be dropped when the stored procedure
does not return a result. The procedure parameters may be IN and/or OUT parameters or simple literals.

{[?=] call stored_procedure_name [param1[, param2 ...]]}

For example, a stored procedure that returns a value and takes two parameters would be called as shown here:

{?= call proc_purge_employees employees, emp_messages}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

For Time/Date

JDBC supports ISO standard formats for date, time, and timestamp. They must be escaped as shown here to be
interpreted as expected:

{d ‘yyyy-mm-dd’} to specify a date
{t ‘hh:mm:ss’} to specify a time literal
{ts ‘yyyy-mm-dd hh:mm:ss.f...’} or {ts ‘yyyy-mm-dd hh:mm:ss’} to specify a
timestamp
{fn function(args, ...)} for scalar functions

Scalar functions and their arguments must be escaped and preceded by the “fn” keyword. In JDBC, the following scalar
functions, if supported by the driver, are translated into the DBMS’s specific syntax for these functions:

System Functions

{fn database()}
{fn user()}

Numeric Functions

{fn abs(number)}
{fn acos(float)}
{fn asin(float)}
{fn atan(float)}
{fn atan2(float1, float2)}
{fn ceiling(number)}
{fn cos(float)}
{fn cot(float)}
{fn degrees(number)}
{fn exp(float)}
{fn floor(number)}
{fn log(float)}
{fn log10(float)}
{fn mod(int1, int2)}
{fn pi()}
{fn power(number, power)}
{fn radians(number)}
{fn rand(int)}
{fn round(number, places)}
{fn sign(number)}
{fn sin(float)}
{fn sqrt(float)}
{fn tan(float)}
{fn trauncate(number, places)}

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

String Functions

{fn ascii(string)}
{fn char(code)}
{fn concat(str1, str2)}
{fn difference(str1, str2)}
{fn insert(str1, start, len, str2)}
{fn lcase(string)}
{fn left(string, count)}
{fn length(string)}
{fn locate(str1, str2, start)}
{fn ltrim(string)}
{fn repeat(string, count)}
{fn replace(str1, str2, str3)}
{fn right(string, count)}
{fn rtrim(string)}
{fn soundex(string)}
{fn space(count)}
{fn substring(string, start, len)}
{fn ucase(string)}

Date and Time Functions

{fn curdate()}
{fn curtime()}
{fn dayname(date)}
{fn dayofmonth(date)}
{fn dayofweek(date)}
{fn dayofyear(date)}
{fn hour(time)}
{fn minute(time)}
{fn month(date)}
{fn monthname(date)}
{fn now()}
{fn quarter(date)}
{fn second(time)}
{fn timestampadd(interval, count, timestamp)}
{fn timestampdiff(interval, tstp1, tstp2)}
{fn week(date)}
{fn year(date)}

Other Functions

{fn ifnull(expr, value)}
{fn convert(value, type)} type may be any SQL datatype

For Characters That Have a Special Meaning

Special characters used for character matching, such as “%” and “_” in LIKE clauses, must be escaped with an escape
character to be interpreted literally. This escape character must be declared as:

{escape ‘escapechar’}

This declaration must be included at the end of any SQL text where these characters have to be interpreted literally. In
the example that follows, the qualification clause matches any value of field_n that begins with an underscore character:

SELECT * FROM table WHERE field_n LIKE ‘_%’ {escape ‘\’}

For Outer Joins

Grammar for outer joins is database-dependent. The JDBC escape syntax for outer joins is:

{oj outerjoin}

where outerjoin respects:

table LEFT OUTER JOIN {table | outerjoin} ON searchcondition

For example, the next query may be used to list all employees and their pending messages (0 or more). Even employees
who do not have message entries will be returned by the query:

SELECT employees.name, emp_messages.message
FROM {oj employees LEFT OUTER JOIN emp_messages
ON employees.emp_id = emp_messages.emp_id}

This SQL string would translate to this (using a Sybase System 11):

SELECT employees.name, emp_messages.message
FROM employees, emp_messages
WHERE employees.emp_id *= emp_messages.emp_id

Other DBMSs would translate the code into their specific dialect. Remember that the Connection.nativeSQL (String
anySqlString) may be used to discover the translation of all escaped syntaxes for your own DBMS.

Transaction Management

JDBC supports database transaction management. Transactions provide a way to group SQL statements so they are
treated as a whole — either all statements in the group are executed or no statements are executed. All statements within
a transaction are treated as a work unit. Transactions are thus useful to guarantee, among other things, data consistency.

Completing a transaction is called committing the transaction, while aborting it is called rolling back the transaction. A
rollback undoes the whole transaction. A transaction’s boundaries are the beginning of its block and the commit or
rollback. Once a commit has been issued, the transaction cannot be rolled back. Note that some DBMSs support nested
transactions as well as intermediate markers within a transaction to indicate a point to which it can be rolled back.

Transaction Modes

Two transaction modes are usually supported by commercial DBMSs: the unchained mode and the ANSI-compatible
chained mode. Check your DBMS’s documentation to determine which is the default.

• The unchained mode requires explicit statements to identify the beginning of a transaction block and its end,
which will always be a commit or rollback statement. The transaction block may be composed of any SQL
statements.
• The chained mode does not require explicit statements to delimit the transaction statements because it
implicitly begins a transaction before any SQL statement that retrieves or modifies data. The transaction must
still be explicitly ended with a transaction commit or rollback.

Be aware that stored procedures that use the unchained transaction mode may be incompatible with other chained mode
transactions.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Transaction Isolation Levels

ANSI defines three standard levels of transaction isolation. Transaction isolation makes sense when concurrent
transactions execute simultaneously. The ANSI specification defines restrictions on the kinds of action permitted in
concurrent transactions so as to prevent dirty reads, nonrepeatable reads, and phantoms.

• Level 1: No dirty reads. Dirty reads occur when a transaction updates a row, then a second transaction reads
that row before the first transaction commits. If the first transaction rolls back the change, the information read
by the second transaction becomes invalid.
• Level 2: No nonrepeatable reads. Nonrepeatable reads occur when a transaction reads a row and then another
transaction updates the same row. If the second transaction commits, subsequent reads by the first transaction
get different values than the original read.
• Level 3: No phantoms. Phantoms occur when a transaction reads a set of rows that satisfy a search condition
and then another transaction updates, inserts, or deletes one or more rows that satisfy the first transaction’s
search condition. In this case, if the first transaction performs subsequent reads with the same search condition,
it reads a different set of rows.

The higher levels include restrictions imposed by all the lower levels. In practice, compatibility with all the transaction
isolation levels is achieved using locking techniques. Check your database documentation for information on these
techniques and see how they can affect performances in a multiuser environment. As a general rule, the higher the
transaction isolation level, the longer locks are held.

Managing Transactions with JDBC

JDBC always opens connections in autocommit mode. This opening mode means that each statement is executed as a
separate transaction without needing to supply commit or rollback commands. In this default mode, it is not possible to
perform rollbacks.

JDBC provides methods to turn off autocommit mode, to set the transaction isolation level, and to commit or rollback
transactions. JDBC transactions begin as soon as the autocommit mode is disabled. In this case, an implicit transaction is
associated with the connection, and it is completed or aborted with commit and rollback methods. The commit or
rollback starts a new implicit transaction. The commit and rollback make JDBC close all PreparedStatements,
CallableStatements, and ResultSets opened during the transaction. Simple statement objects stay open. This is the default
behavior and it may be disabled.

The JDBC methods to manage transactions are these:

Connection

void setTransactionIsolation(int isolationlevel);
int getTransactionIsolation();
void setAutoCommit(boolean autocommit);
boolean getAutoCommit();
void commit();

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

void rollback();
void setAutoClose(boolean autoClose);
boolean getAutoClose();

void setTransactionIsolation(int isolationlevel);

This method sets the transaction isolation level. The possible JDBC transaction isolation levels are the following:

TRANSACTION_READ_UNCOMMITTED:
Dirty reads are allowed.

TRANSACTION_READ_COMMITTED:
Reads on a row are blocked until the transaction is committed.

TRANSACTION_REPEATABLE_READ:
Repeated reads on a row will return the originally read data, regardless of any updates by other users prior to
commitment of the transaction.

TRANSACTION_SERIALIZABLE:
All reads are disallowed until the transaction is committed.

TRANSACTION_NONE:
Transactions are not supported. This method cannot be called while in the middle of a transaction.

int getTransactionIsolation();
It returns the current transaction isolation levels. A value of zero means that transactions are not supported.

void setAutoCommit(boolean autocommit);
The method setAutoCommit(false) implicitly begins a new transaction. Either commit() or rollback() must be
used to terminate the transaction.

boolean getAutoCommit();
This method returns the current autocommit state. False means that user transactions are in use.

void commit();
This method completes the transaction. All changes made since the previous transaction termination
(committed or rolled back) are made permanent and all transaction locks are released.

void rollback();
All changes made since the previous transaction termination (committed or rolled back) are dropped. This
method undoes the current transaction statements and all transaction locks are released.

void setAutoClose(boolean autoClose);
When the connection is in autoclose mode, all its PreparedStatements, Callable Statement, and ResultSets are
closed when the transaction is committed or rolled back. This is the default behavior, but it can be disabled by
passing false as parameter. Some databases allow these objects to remain open across commits, whereas other
databases close them.

boolean getAutoClose();
This method returns the current autoclose state for this connection.

Example

// transactions
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 String url = “jdbc:odbc:mysource”;
 try
 {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 Statement firstStmt =

 myConnection.createStatement();
 Statement secondStmt =
 myConnection.createStatement();
 myConnection.setTransactionIsolation(
 Connection.TRANSACTION_SERIALIZABLE);
 myConnection.setAutoCommit(false);
 firstStmt.executeUpdate(
 “DELETE emp_messages WHERE id IN
 (SELECT id FROM employees WHERE name = ‘Jones’)”);
 firstStmt.close();
 secondStmt.executeUpdate(
 “DELETE employees WHERE name = ‘Jones’”);
 secondStmt.close();
 myConnection.commit();
 myConnection.setTransactionIsolation(
 Connection.TRANSACTION_NONE);
 myConnection.close();
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }
 }
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Cursors

Cursors are used to access a set of rows returned by a SQL SELECT statement. They are associated with query
statements and have a symbolic name that may be used to access individual rows of data. Associated with cursors are
cursor result sets and cursor positions. Note that some DBMSs do not support cursors.

Thus, a cursor:

• Is associated with a SELECT statement
• Has a name
• Has a position
• May affect ResultSets by positioned update/delete statements using the cursor name

Figure 6-1 illustrates the cursor mechanism.

Figure 6-1: Cursor components.

Operation Theory

JDBC supports simple cursors that can be used in positioned update or positioned delete statements. They remain valid
until the ResultSets or their parent Statements are closed.

Statement

void ResultSet.setCursorName(String name);
String ResultSet.getCursorName();
boolean DatabaseMetaData.supportsPositionedDelete();
boolean DatabaseMetaData.supportsPositionedUpdate();

void ResultSet.setCursorName(String name);

This method is used to give a statement a specific cursor name. Cursor names should be unique. A cursor name is
automatically provided by default, which is often sufficient.

String ResultSet.getCursorName();

This method returns the current ResultSet’s cursor name. This cursor name may be used later for positioned updates and
positioned deletes.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
javascript:displayWindow('images/06-01.jpg',500,235)
javascript:displayWindow('images/06-01.jpg',500,235)

boolean DatabaseMetaData.supportsPositionedDelete();

This DatabaseMetaData method returns true when the database supports positioned deletes.

boolean DatabaseMetaData.supportsPositionedUpdate();

This method returns true when the database supports positioned updates.

Practical Examples

The following examples are somewhat simplified. They illustrate the cursor mechanism for positioned updates and
positioned deletes. In a real-world application, the SELECT statement would have a WHERE clause to limit the cursor
scope. The condition that is tested before doing the positioned delete or positioned update is usually more elaborate.

// cursors: positioned delete
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 String url = “jdbc:odbc:mysource”;
 try
 {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 Statement firstStmt =
 myConnection.createStatement();
 Statement secondStmt =
 myConnection.createStatement();
 ResultSet rs = firstStmt.executeQuery(
 “SELECT * FROM employees FOR UPDATE”);
 String csr = rs.getCursorName();
 int temp;
 // we scan the resultset, row by row
 while (rs.next())
 {
 temp = rs.getInt(“salary”);
 // activate positioned delete
 if (temp >= 100000)
 {
 secondStmt.executeUpdate(
 “DELETE employees WHERE CURRENT OF “ + csr);
 }
 }
 rs.close();
 firstStmt.close();
 secondStmt.close();
 myConnection.close();
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }

 }
}

The same remarks are valid for the positioned update example shown here:

// cursors: positioned update
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 String url = “jdbc:odbc:mysource”;
 try
 {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 Statement firstStmt =
 myConnection.createStatement();
 Statement secondStmt =
 myConnection.createStatement();
 ResultSet rs = firstStmt.executeQuery(
 “SELECT * FROM employees FOR UPDATE”);
 String csr = rs.getCursorName();
 int temp;
 // we scan the resultset, row by row
 while (rs.next())
 {
 temp = rs.getInt(“salary”);
 // activate positioned update
 if (temp >= 100000)
 {
 secondStmt.executeUpdate(
 “UPDATE employees SET salary=salary*1.1
 WHERE CURRENT OF “ + csr);
 }
 }
 rs.close();
 firstStmt.close();
 secondStmt.close();
 myConnection.close();
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }
 }
}

Summary

This chapter discussed some essential techniques for fine-tuning database queries and updates from JDBC:

• Dealing with data type conversion
• The SQL escape syntax

• Database transactions
• Handling SQL cursors

The next chapter discusses more advanced techniques such as callable statements, dynamic SQL, and the metadata
interfaces of JDBC.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Chapter 7:
Advanced Techniques

In This Chapter

This chapter introduces and shows how to deal with advanced techniques of Structured Query Language (SQL) and Java
Database Connectivity (JDBC) that add a professional touch to applications:

• Handling stored procedures from JDBC
• Dynamic SQL
• Fetching database metadata
• Dynamic data access

This chapter discusses advanced techniques supported by JDBC. These techniques may prove to be very powerful
when developing professional applications or applets. Some database management system (DBMS) and JDBC drivers
may not support all these techniques.

Callable Statements

Callable statements are SQL statements that invoke stored procedures, which are also called database Remote Procedure
Calls (RPCs). The RPC is popular in the Unix system programming world. It is used here in the sense of invoking
remote code that is stored in the database — stored procedures. Such procedures, when supported by the DBMS, allow
storing of user statements containing SQL text in the database. These procedures are usually stored for reuse from user
session to user session. They are useful for embedding application logic at the database side. Figure 7-1 illustrates the
invocation mechanism for stored procedures.

Figure 7-1: Invoking a stored procedure.

Statements that invoke stored procedures should use the JDBC CallableStatement class. A dedicated method must be
called to prepare the callable statement. The usual methods are then used to execute the statement.

Connection

CallableStatement prepareCall(String sql);

where the argument is of the form:

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
javascript:displayWindow('images/07-01.jpg',500,346)
javascript:displayWindow('images/07-01.jpg',500,346)

“{? =call stored_procedure_name ?, ?,}”

CallableStatement prepareCall(String sql);

This method prepares a callable statement. It returns a CallableStatement object. Why something more elaborate than a
simple Statement object is needed is discussed later.

Stored procedures may return multiple result types because they may be composed of SQL statements that return diverse
result types: result sets and update counts. The usual methods are used to retrieve these results. However, when a
procedure returns both multiple results and OUT parameter values, the OUT parameters should be retrieved last. Stored
procedures may be called with parameters. They provide maximum flexibility by allowing values to be passed from and
to the user’s application. There are two types of such parameters: IN and OUT. IN parameters pass data to the stored
procedure, and OUT parameters are values returned by the procedure code. Special JDBC methods exist to set and
access these parameters. As Figure 7-2 shows, setting IN values and registering OUT parameters must be done before
the callable statement is executed. Figure 7-2 illustrates how to handle the parameters of callable statements.

Figure 7-2: Overview of dealing with parameters.

Once the statement has been executed, all its OUT parameters may be explored, one by one, in left-to-right order. Note
that Figure 7-2 illustrates the processing that must be done for a stored procedure that does not return ResultSets. If it
returns a ResultSet, we would simply add a loop to fetch the result set before accessing the OUT parameters.

Setting Parameters

IN and OUT parameters must be set or registered prior to executing a callable statement.

IN Parameters

IN parameters receive a value from the user’s application. They are set via setXXX() methods that take two arguments:
the parameter index, beginning at 1, and the value to set. The following methods are used to set values corresponding to
their parameter’s specific type.

CallableStatement

void setNull(int parameterIndex, int sqlType);
void setBoolean(int parameterIndex, boolean x);
void setByte(int parameterIndex, byte x);
void setShort(int parameterIndex, short x);
void setInt(int parameterIndex, int x);

javascript:displayWindow('images/07-02.jpg',211,387)
javascript:displayWindow('images/07-02.jpg',211,387)

void setLong(int parameterIndex, long x);
void setFloat(int parameterIndex, float x);
void setDouble(int parameterIndex, double x);
void set BigDecimal(int parameterIndex, java.math.BigDecimal x);
void setString(int parameterIndex, String x);
void setBytes(int parameterIndex, byte x[]);
void setDate(int parameterIndex, java.sql.Date x);
void setTime(int parameterIndex, java.sql.Time x);
void setTimestamp(int parameterIndex, java.sql.Timestamp x);
void setAsciiStream(int parameterIndex, java.io.InputStream x, int length);
void setUnicodeStream(int parameterIndex, java.io.InputStream x, int length);
void setBinaryStream(int parameterIndex, java.io.InputStream x, int length);
void setObject(int parameterIndex, Object x);
void setObject(int parameterIndex, Object x, int targetSqlType);
void setObject(int parameterIndex, Object x, int targetSqlType, int scale);
void clearParameters();

void setObject(...);

The setObject() methods belong to advanced JDBC features. They allow given Java objects to be stored in the
database. However, they are converted to the database target SQL data type before they are actually sent to the database.
Note that it is possible to pass database specific abstract data types by using a driver specific Java type and using a
targetSqlType of java.sql.types.OTHER with the setObject(int parameterIndex, Object x, int targetSqlType) and
the setObject(int parameterIndex, Object x, int targetSqlType, int scale) methods.

void clearParameters();

Normally, parameter values remain unaffected for repeated use of a statement. When invoked, this method immediately
releases the resources used by the current parameters, and their values are cleared.

OUT Parameters

OUT parameters must be registered prior to executing the callable statement. This registration is the way to specify their
type. The following methods are available to register OUT parameters:

CallableStatement

void registerOutParameter(int parameterIndex, int sqlType);
void registerOutParameter(int parameterIndex, int sqlType, int scale);

void registerOutParameter(int parameterIndex, int sqlType);

The first argument is the parameter index, beginning at 1. The type argument must be defined in java.sql.Types.

void registerOutParameter(int parameterIndex, int sqlType, int scale);

This method is used to register OUT parameters of type SQL numeric or decimal. The scale argument represents the
desired number of digits to the right of the decimal point.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Accessing Parameters

It is necessary to access parameters in left-to-right order and with the method that matches their type. These methods are
provided for this purpose:

CallableStatement

boolean wasNull();
String getString(int parameterIndex);
boolean getBoolean(int parameterIndex);
byte getByte(int parameterIndex);
short getShort(int parameterIndex);
int getInt(int parameterIndex);
long getLong(int parameterIndex);
float getFloat(int parameterIndex);
double getDouble(int parameterIndex);
java.math.BigDecimal getBigDecimal(int parameterIndex, int scale);
byte[] getBytes(int parameterIndex);
java.sql.Date getDate(int parameterIndex);
java.sql.Time getTime(int parameterIndex);
java.sql.Timestamp getTimestamp(int parameterIndex);
Object getObject(int parameterIndex);

boolean wasNull();

When an OUT parameter has a null value, this method returns true. Note that you must call the corresponding getXXX
() method before calling wasNull().

Example

Listing 7-1 illustrates how to prepare a callable statement, how to set IN parameters, how to register OUT parameters,
how to execute the statement, and how to access the OUT parameters. In this example, the first parameter is an IN
parameter used to pass a value to the stored procedure. The second one is an OUT parameter used to retrieve a value
after the execution of the stored procedure.

Listing 7-1: Dealing with stored procedure parameters.

...

...
Connection myConnection = DriverManager.getConnection(url,
 “javauser”, “hotjava”);
CallableStatement myStmt = myConnection.prepareCall(
 “{call my_stored_procedure ?, ?}”);
myStmt.setString(1, “Hotjava”);

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

myStmt.registerOutParameter(2, java.sql.Types.VARCHAR);
int res = myStmt.executeUpdate();
String outParam = myStmt.getString(2);
myStmt.close();
myConnection.close();
...
...

Dynamic SQL

A prepared statement is a SQL statement that is sent to the database prior to its execution. Unlike stored procedures,
prepared statements will not remain in the database after the resources associated with it are freed. They may be called a
number of times with different parameter values. Figures 7-3 and 7-4 illustrate some differences between the execution
of simple SQL statements and the execution of prepared statements.

Figure 7-3: Sending a static statement.

Figure 7-4: Sending parameters to a prepared statement.

In Figure 7-3, the SQL text is sent to the database along with specific values and literals. This example illustrates an
INSERT.

When executing a prepared statement (Figure 7-4), the SQL statement is already at the database side. Only parameter
values are passed.

As Figure 7-5 shows, five steps must be followed to use prepared statements with JDBC:

1. Prepare the SQL statement
2. Set IN parameters
3. Execute the statement
4. Get the results, if any
5. If necessary, set new IN parameter values and reexecute the statement

javascript:displayWindow('images/07-03.jpg',500,283)
javascript:displayWindow('images/07-03.jpg',500,283)
javascript:displayWindow('images/07-04.jpg',500,284)
javascript:displayWindow('images/07-04.jpg',500,284)

Figure 7-5: Overview of prepared statements.

The last step is optional, but in many cases prepared statements are used for this facility.

Connection

PreparedStatement prepareStatement(String sql);

PreparedStatement prepareStatement(String sql);

This method is used to get a PreparedStatement object for later execution. Parameters are symbolized by “?” characters.

Passing IN Parameters

As for callable statements, prepared statement IN parameters must be set one by one. These methods are available for
this purpose:

PreparedStatement

void setNull(int parameterIndex, int sqlType);
void setBoolean(int parameterIndex, boolean x);
void setByte(int parameterIndex, byte x);
void setShort(int parameterIndex, short x);
void setInt(int parameterIndex, int x);
void setLong(int parameterIndex, long x);
void setFloat(int parameterIndex, float x);
void setDouble(int parameterIndex, double x);
void setBigDecimal(int parameterIndex, java.math.BigDecimal x);
void setString(int parameterIndex, String x);
void setBytes(int parameterIndex, byte x[]);
void setDate(int parameterIndex, java.sql.Date x);
void setTime(int parameterIndex, java.sql.Time x);
void setTimestamp(int parameterIndex, java.sql.Timestamp x);
void setAsciiStream(int parameterIndex, java.io.InputStream x, int length);
void setUnicodeStream(int parameterIndex, java.io.InputStream x, int length);
void setBinaryStream(int parameterIndex, java.io.InputStream x, int length);
void setObject(int parameterIndex, Object x);
void setObject(int parameterIndex, Object x, int targetSqlType);
void setObject(int parameterIndex, Object x, int targetSqlType, int scale);

javascript:displayWindow('images/07-05.jpg',268,573)
javascript:displayWindow('images/07-05.jpg',268,573)

void clearParameters();

Note that the setObject() and clearParameters() methods have the same meaning as for callable statements.

Executing the Query and Retrieving Results

Once all IN parameters are set, the execution of a prepared statement is performed as for normal statements. A prepared
statement may return a count value as well as a ResultSet. Listing 7-2 shows all these steps put together.

Listing 7-2: Dealing with prepared statement parameters.

...

...
Connection myConnection = DriverManager.getConnection(url,
“javauser”, “hotjava”);
PreparedStatement myStmt = myConnection.prepareStatement(
 “UPDATE employees SET salary = ? WHERE department = ?”);
myStmt.setInt(1, 100000);
myStmt.setString(2, “Systems and Networking”);
int res = myStmt.executeUpdate();
myStmt.setInt(1, 200000);
myStmt.setString(2, “Engineering”);
res = myStmt.executeUpdate();
myStmt.setInt(1, 300000);
myStmt.setString(2, “Management”);
res = myStmt.executeUpdate();
myStmt.close();
myConnection.close();
...
...

Dealing with BLOBs

There was no way to send Binary Large Objects (BLOBs) to a database using normal SQL statements. This feature is
simply not supported within normal SQL statements. Because prepared statements support the setAsciiStream(),
setUnicode-Stream(), and setBinaryStream() methods of setting IN parameters, it is possible to send multikilobyte
and multimegabyte values to the database.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Sending BLOBs

Very large binary data will be sent using input/output (I/O) streams and setBinaryStream(). It is unnecessary to send
the data in small chunks as is required for receiving BLOBs because the JDBC driver will make repeated calls on the I/O
stream to read its content and send it to the database as the actual parameter data. Listing 7-3 illustrates an insertion of
BLOBs using input streams.

Listing 7-3: Sending very large parameters to the database.

...

...
Connection myConnection = DriverManager.getConnection(url,
“javauser”, “hotjava”);
java.io.File pictFile = new java.io.File(“jones.jpeg”);
java.io.File audioFile = new java.io.File(“jones.au”);
int pictFileLen = (int) pictFile.length();
int audioFileLen = (int) audioFile.length();
java.io.InputStream fPict =
 new java.io.FileInputStream(pictFile);
java.io.InputStream fAudio =
 new java.io.FileInputStream(audioFile);
PreparedStatement myStmt = myConnection.prepareStatement(
 “UPDATE employees SET emp_pict = ?, emp_welcome = ?
 WHERE id = ?”);
myStmt.setBinaryStream(1, fPict, pictFileLen);
myStmt.setBinaryStream(2, fAudio, audioFileLen);
myStmt.setInt(3, 1);
int res = myStmt.executeUpdate();
myStmt.close();
myConnection.close();
...
...

Metadata Interfaces

Metadata interfaces are useful to query a database or a ResultSet for meta information. A programmer normally will not
use the DatabaseMetaData interface; however, it provides many interesting methods for discovering database behaviors,
default values, supported functions, and so forth. The ResultSetMetaData interface will probably be used more often,
because it provides information on ResultSets that are, indeed, results of user queries.

Information on Database Objects

The scope of database metadata is very broad. One of its most interesting uses is to obtain information on the database
objects themselves.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

Connection

DatabaseMetaData getMetaData();

DatabaseMetaData getMetaData();

A database can provide information on its objects, such as tables, stored procedures, SQL grammar, and various
properties. All this information is obtainable through methods that apply to a DatabaseMetaData object. The code
getMetaData() returns such an object.

The DatabaseMetaData Interface

The DatabaseMetaData interface provides a number of methods to access database metadata. The methods fit into
different categories, such as minor information on the database itself, information on what kind of features it supports,
on its limitations, and on all database objects it contains. Most of them return string, boolean, or integer values, but a
number of them return ResultSets. How to deal with ResultSets is discussed later.

Miscellaneous Database Information

The DatabaseMetaData interface is a rich interface. It provides many methods useful to discover the specifics of the
database.

DatabaseMetaData

boolean allProceduresAreCallable();
boolean allTableAreSelectable();
String getURL();
String getUserName();
boolean isReadOnly();
boolean nullsAreSortedHigh();
boolean nullsAreSortedLow();
boolean nullsAreSortedAtStart();
boolean nullsAreSortedAtEnd();
String getDatabaseProductName();
String getDatabaseProductVersion();
String getDriverName();
String getDriverVersion();
int getDriverMajorVersion();
int getDriverMinorVersion();
boolean usesLocalFiles();
boolean usesLocalFilePerTable();
boolean supportsMixedCaseIdentifiers();
boolean storesUpperCaseIdentifiers();
boolean storesLowerCaseIdentifiers();
boolean storesMixedCaseIdentifiers();
boolean supportsMixedCaseQuotedIdentifiers();
boolean storesUpperCaseQuotedIdentifiers();
boolean storesLowerCaseQuotedIdentifiers();
boolean storesMixedCaseQuotedIdentifiers();
String getIdentifierQuoteString();
String getSQLKeywords();
String getNumericFunctions();
String getStringFunctions();
String getSystemFunctions();

String getTimeDateFunctions();
String getSearchStringExcape();
String getExtraNameCharacters();

Listing 7-4 illustrates how to get various kinds of information using some of the DatabaseMetaData object methods.

Listing 7-4: DatabaseMetaData

// databasemetadata
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 String url = “jdbc:odbc:mysource”;
 try
 {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 DatabaseMetaData mtdt =
 myConnection.getMetaData();
 System.out.println(“URL in use: “ +
 mtdt.getURL());
 System.out.println(“User name: “ +
 mtdt.getUserName());
 System.out.println(“DBMS name: “ +
 mtdt.getDatabaseProductName());
 System.out.println(“DBMS version: “ +
 mtdt.getDatabaseProductVersion());
 System.out.println(“Driver name: “ +
 mtdt.getDriverName());
 System.out.println(“Driver version: “ +
 mtdt.getDriverVersion());
 System.out.println(“supp. SQL Keywords: “ +
 mtdt.getSQLKeywords());
 myConnection.close();
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }
 }
}

The example’s output may be similar to the following code, which is particular to Sybase System 11.

URL in use: jdbc:odbc:mysource
User name: javauser
DBMS name: SQL Server
DBMS version: SQL Server/11.0/P/Sun_svr4/OS 5.4/1/OPT/Thu Dec 7 23:58:01 PST 1995
Driver name: JDBC-ODBC Bridge (SYSYB95.DLL)
Driver version: 1.0101 (02.12.0000)
supp. SQL Keywords: arith_overflow,break,browse,bulk,char_convert,checkpoint,
clustered,commit,compute,confirm,controlrow,data_pgs,database,dbcc,disk,dummy,

dump,endtran,errlvl,errorexit,exit,fillfactor,holdlock,identity_insert,if,kill,
lineno,load,mirror,mirrorexit,noholdlock,nonclustered,numeric_truncation,offsets,
once,over,perm,permanent,plan,print,proc,processexit,raiserror,read,readtext,
reconfigure,replace,reserved_pgs,return,role,rowcnt,rowcount,rule,save,setuser,
shared,shutdown,some,statistics,stripe,syb_identity,syb_restree,syb_terminate,
temp,textsize,tran,trigger,truncate,tsequal,used_pgs,user_option,waitfor,while,
writetext

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Features Supported

The DatabaseMetaData interface is a rich interface that provides many methods for discovering the features supported by
the database.

DatabaseMetaData

boolean supportsAlterTableWithAddColumn();
boolean supportsAlterTableWithDropColumn();
boolean supportsColumnAliasing();
boolean nullPlusNonNullIsNull();
boolean supportsConvert();
boolean supportsConvert(int fromType, int toType);
boolean supportsTableCorrelationNames();
boolean supportsDifferentTableCorrelationNames();
boolean supportsExpressionsInOrderBy();
boolean supportsOrderByUnrelated();
boolean supportsGroupBy();
boolean supportsGroupByUnrelated();
boolean supportsGroupByBeyondSelect();
boolean supportsLikeEscapeClause();
boolean supportsMultipleResultSets();
boolean supportsMultipleTransactions();
boolean supportsNonNullableColumns();
boolean supportsMinimumSQLGrammar();
boolean supportsCoreSQLGrammar();
boolean supportsExtendedSQLGrammar();
boolean supportsANSI92EntryLevelSQL();
boolean supportsANSI92IntermediateSQL();
boolean supportsANSI92FullSQL();
boolean supportsIntegrityEnhancementFacility();
boolean supportsOuterJoins();
boolean supportsFullOuterJoins();
boolean supportsLimitedOuterJoins();
String getSchemaTerm();
String getProcedureTerm();
String getCatalogTerm();
boolean isCatalogAtStart();
String getCatalogSeparator();
boolean supportsSchemasInDataManipulation();
boolean supportsSchemasInProcedureCalls();
boolean supportsSchemasInTableDefinitions();
boolean supportsSchemasInIndexDefinitions();
boolean supportsSchemaInPriviledDefinitions();
boolean supportsCatalogsInDataManipulation();
boolean supportsCatalogsInProcedureCalls();

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

boolean supportsCatalogsInTableDefinitions();
boolean supportsCatalogsInIndexDefinitions();
boolean supportsCatalogsInPrivilegeDefinitions();
boolean supportsPositionedDelete();
boolean supportsPositionedUpdate();
boolean supportsSelectForUpdate();
boolean supportsStoredProcedures();
boolean supportsSubqueriesInComparisons();
boolean supportsSubqueriesInExists();
boolean supportsSubqueriesInIns();
boolean supportsSubqueriesInQuantifieds();
boolean supportsCorrelatedSubqueries();
boolean supportsUnion();
boolean supportsUnionAll();
boolean supportsOpenCursorAcrossCommit();
boolean supportsOpenCursorAcrossRollback();
boolean supportsOpenStatementAcrossCommit();
boolean supportsOpenStatementAcrossRollback();

Various Database Limitations

The DatabaseMetaData interface also provides many methods for discovering the database’s limitations.

DatabaseMetaData

int getMaxBinaryLiteralLength();
int getMaxCharLiteralLength();
int getMaxColumnNameLength();
int getMaxColumnsInGroupBy();
int getMaxColumnsInIndex();
int getMaxColumnsInOrderBy();
int getMaxColumnsInSelect();
int getMaxColumnsInTable();
int getMaxConnections();
int getMaxCursorNameLength();
int getMaxIndexLength();
int getMaxSchemaNameLength();
int getMaxProcedureNameLength();
int getMaxCatalogNameLength();
int getMaxRowSize();
boolean doesMaxRowSizeIncludeBlobs();
int getMaxStatementLength();
int getMaxStatements();
int getMaxTableNameLength();
int getMaxTablesInSelect();
int getMaxUserNameLength();
int getDefaultTransactionIsolation();
boolean supportsTransactions();
boolean supportsTransactionIsolationLevel(int level);
boolean supportsDataDefinitionAndDataManipulationTransactions();
boolean supportsDataManipulationTransactionsOnly();
boolean dataDefinitionCausesTransactionCommit();
boolean dataDefinitionIgnoredInTransactions();

Listing 7-5 illustrates a metadata method for discovering the database’s ANSI compliance level.

Listing 7-5: Metadata method for discovering ANSI compliance level.

// discovering ANSI compliance
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 String url = “jdbc:odbc:mysource”;
 try
 {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 DatabaseMetaData mtdt =
 myConnection.getMetaData();
 System.out.println(“ANSI92 Entry Level: “ +
 mtdt.supportsANSI92EntryLevelSQL());
 System.out.println(“ANSI92 Intermediate: “ +
 mtdt.supportsANSI92IntermediateSQL());
 System.out.println(“ANSI92 Full SQL: “ +
 mtdt.supportsANSI92FullSQL());
 System.out.println(“Minimum SQL Grammar: “ +
 mtdt.supportsMinimumSQLGrammar());
 System.out.println(“Core SQL Grammar: “ +
 mtdt.supportsCoreSQLGrammar());
 System.out.println(“Extended SQL Grammar: “
 + mtdt.supportsExtendedSQLGrammar());
 myConnection.close();
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace ();
 }
 }
}

Information on Database Objects

The DatabaseMetaData interface also provides many methods for discovering the database’s contents.

DatabaseMetaData

ResultSet getProcedures(String catalog, String schemaPattern, String
 procedureNamePattern);
ResultSet getProcedureColumns(String catalog, String schemaPattern, String
 procedureNamePattern, String columnNamePattern);
ResultSet getTables(String catalog, String schemaPattern, String
tableNamePattern,
 String types[]);
getschemas();
ResultSet getCatalogs();
ResultSet getTableTypes();
ResultSet getColumns(String catalog, String schemaPattern, String
tableNamePattern, String
 columnNamePattern);

ResultSet getColumnPrivileges(String catalog, String schema, String table, String
 columnNamePattern);
ResultSet getTablePrivileges(String catalog, String schemaPattern, String
 tableNamePattern);
ResultSet getBestRowIdentifier(String catalog, String schema, String table, int
scope,
 boolean nullable);
ResultSet getVersionColumns(String catalog, String schema, String table);
ResultSet getPrimaryKeys(String catalog, String schema, String table);
ResultSet getImportedKeys(String catalog, String schema, String table);
ResultSet getExportedKeys(String catalog, String schema, String table);
ResultSet getCrossReference(String primaryCatalog, String
 primarySchema, String primaryTable, String foreignCatalog, String
foreignSchema, String foreignTable);
ResultSet getTypeInfo();
ResultSet getIndexInfo(String catalog, String schema, String table, boolean
unique, boolean
 approximate);

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Most of these methods need arguments such as catalog name, schema name, procedure, table, and column name. All the
parameters named xxxPattern do not have to match a particular database object name. If necessary, they may be
composed of the “%” and “_” matching characters. The “%” matches zero or more characters, while “_” matches any
one character.

All these methods return ResultSets. Indeed, they usually return multiple values, which means providing results through
ResultSets is very convenient. As Figure 7-6 shows, the usual method is used to scan those result sets.

Figure 7-6: Processing methods that return a ResultSet.

Listing 7-6 includes some database metadata calls that show how to query metadata information using these last
methods.

Listing 7-6: Metadata on database objects.

// retrieving results
import java.sql.*;
class SimpleExample
{
 public static void main(String args[])
 {
 String url = “jdbc:odbc:mysource”;
 try
 {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 Connection myConnection =
 DriverManager.getConnection(url,
 “javauser”, “hotjava”);
 DatabaseMetaData dmtd = myConnection.getMetaData();
 // list catalogs managed by this dbms
 scanRS(“Info on “ + dmtd.getCatalogTerm() + “(s):”,

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
javascript:displayWindow('images/07-06.jpg',500,890)
javascript:displayWindow('images/07-06.jpg',500,890)

 dmtd.getCatalogs());
 // list all tables in current catalog, belonging
 // to all schemas, of all types
 scanRS(“Info on tables:”,
 dmtd.getTables(myConnection.getCatalog(), “%”,
 “%”, null));
 // list all procedures in current catalog,
 // belonging to all schemas
 scanRS(“Info on “ + dmtd.getProcedureTerm() + “(s):”,
 dmtd.getProcedures(myConnection.getCatalog(),
“%”, “%”));
 myConnection.close();
 }
 catch(java.lang.Exception ex)
 {
 ex.printStackTrace();
 }
}
private static void scanRS(String info, ResultSet rs)
 throws SQLException
{
 System.out.println(info);
 System.out.println();
 if (rs != null)
 {
 int i;
 // we have a ResultSet

 ResultSetMetaData rsmd = rs.getMetaData();
 int numCols = rsmd.getColumnCount();
 // display column headers
 for (i = 1; i <= numCols; i++)
 {
 if (i > 1) System.out.print(“, “);
 System.out.print(rsmd.getColumnLabel(i));
 }
 System.out.println(“”);
 // step through the rows
 while (rs.next())
 {
 // process the columns
 for (i = 1; i <= numCols; i++)
 {
 if (i > 1) System.out.print(“, “);
 System.out.print(rs.getString(i));
 }
 System.out.println(“”);
 }
}
else
 {
 System.out.println(“no data returned...”);
 }
 System.out.println ();
 }
}

The Listing 7-6 example prints information similar to the following listing. The data returned here came from a Sybase

System 11 server. The user’s current catalog is the default sample database provided by Sybase.

Info on database(s)

TABLE_QUALIFIER
master
model
pubs2
sybsecurity
sybsyntax
sybsystemprocs
tempdb
test
testdb2
userdb

Info on tables

TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, TABLE_TYPE, REMARKS
pubs2, dbo, sysalternates, SYSTEM TABLE, null
pubs2, dbo, syscolumns, SYSTEM TABLE, null
pubs2, dbo, syscomments, SYSTEM TABLE, null
pubs2, dbo, sysconstraints, SYSTEM TABLE, null
pubs2, dbo, sysdepends, SYSTEM TABLE, null
pubs2, dbo, sysindexes, SYSTEM TABLE, null
pubs2, dbo, syskeys, SYSTEM TABLE, null
pubs2, dbo, syslogs, SYSTEM TABLE, null
pubs2, dbo, sysobjects, SYSTEM TABLE, null
pubs2, dbo, sysprocedures, SYSTEM TABLE, null
pubs2, dbo, sysprotects, SYSTEM TABLE, null
pubs2, dbo, sysreferences, SYSTEM TABLE, null
pubs2, dbo, syssegments, SYSTEM TABLE, null
pubs2, dbo, systypes, SYSTEM TABLE, null
pubs2, dbo, sysusermessages, SYSTEM TABLE, null
pubs2, dbo, sysusers, SYSTEM TABLE, null
pubs2, dbo, au_pix, TABLE, null
pubs2, dbo, authors, TABLE, null
pubs2, dbo, blurbs, TABLE, null
pubs2, dbo, discounts, TABLE, null
pubs2, dbo, publishers, TABLE, null
pubs2, dbo, roysched, TABLE, null
pubs2, dbo, sales, TABLE, null
pubs2, dbo, salesdetail, TABLE, null
pubs2, dbo, stores, TABLE, null
pubs2, dbo, titleauthor, TABLE, null
pubs2, dbo, titles, TABLE, null

Info on Stored Procedure(s)

PROCEDURE_QUALIFIER, PROCEDURE_OWNER, PROCEDURE_NAME,
 NUM_INPUT_PARAMS, NUM_OUTPUT_PARAMS, NUM_RESULT_SETS, REMARKS,
 PROCEDURE_TYPE
pubs2, dbo, byroyalty, null, null, null, null, 1
pubs2, dbo, discount_proc, null, null, null, null, 1
pubs2, dbo, history_proc, null, null, null, null, 1
pubs2, dbo, insert_sales_proc, null, null, null, null, 1
pubs2, dbo, insert_salesdetail_proc, null, null, null, null, 1
pubs2, dbo, storeid_proc, null, null, null, null, 1

pubs2, dbo, storename_proc, null, null, null, null, 1
pubs2, dbo, title_proc, null, null, null, null, 1
pubs2, dbo, titleid_proc, null, null, null, null, 1
pubs2, guest, testproc, null, null, null, null, 1

The ResultSetMetaData Interface

Once a ResultSet has been returned by the database, it is possible to get all kinds of information concerning the
ResultSet, such as the columns it contains and its type and label. The ResultSetMetaData interface offers the following
methods for finding out about a result set’s metadata. These methods also work on ResultSets returned by some of the
DatabaseMetaData class because those ResultSets are just ResultSets.

Information on ResultSet Columns

The ResultSetMetaData interface is a rich interface providing many methods for obtaining information about the
columns of a result set.

ResultSetMetaData

int getColumnCount();
int getColumnDisplaySize(int column);
String getColumnLabel(int column);
String getColumnName(int column);
String getSchemaName(int column);
int getPrecision(int column);
int getScale(int column);
String getTableName(int column);
String getCatalogName(int column);
int getColumnType(int column);
String getColumnTypeName(int column);

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Column Properties

The ResultSetMetaData interface provides many methods for obtaining information about the properties of the columns
of a result set.

ResultSetMetaData

boolean isAutoIncrement(int column);
boolean isCaseSensitive(int column);
boolean isSearchable(int column);
boolean isCurrency(int column);
int isNullable(int column);
boolean isSigned(int column);
boolean isReadOnly(int column);
boolean isWritable(int column);
boolean isDefinitelyWritable(int column);

Note that there is no way to get information on rows of data or their numbers. Such information is only available on
columns. The method in Listing 7-7 gets the number and label of each column.

Listing 7-7: ResultSetMetaData.

...

...
 int i;
 // we have a ResultSet

 ResultSetMetaData rsmd = rs.getMetaData();
 int numCols = rsmd.getColumnCount();
 // display column headers
 for (i = 1; i <= numCols; i++)
 {
 if (i > 1) System.out.print(“, “);
 System.out.print(rsmd.getColumnLabel(i));
 }
 System.out.println(“”);
...
...

Dynamic Data Access

While the DatabaseMetaData and ResultSetMetaData interfaces provide numerous methods to access a database without
knowing its schema, other methods exist to support generic data access. These methods allow data to be accessed
dynamically through generic Java objects. They are of the form getObject() and setObject() to retrieve and to set data,

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

respectively, in a table or result set’s columns.

The usual methods to send and retrieve data allow you to map one or more SQL data types to specific Java types. The
methods explained here allow you to use Java objects, regardless of what type SQL data is accessed. Precise mapping
rules are used. Indeed, specific SQL data types must correspond to specific Java types, and specific Java types must
correspond to specific SQL types.

Dynamically Typed Data Retrieval

Dynamically typed data retrieval is performed using ResultSet.getObject() to access columns, or CallableStatement.
getObject() to access OUT parameters of stored procedures. Table 7-1 shows the default mapping from SQL types to
Java types that are subtypes of Object. No mapping to Java streams is provided.

Table 7-1DEFAULT MAPPING FROM SQL TYPES TO JAVA OBJECT TYPES

SQL type Java object type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT Boolean

TINYINT Integer

SMALLINT Integer

INTEGER Integer

BIGINT Long

REAL Float

FLOAT Double

DOUBLE Double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

ResultSet

Object getObject(int columnIndex);
Object getObject(String columnName);

The getObject() method is used like other getXXX() methods but returns a Java object whose type may be discovered
using Table 7-1. It corresponds to the SQL data type of the accessed result set column.

CallableStatement

void registerOutParameter(int parameterIndex, int sqlType);

void registerOutParameter(int parameterIndex, int sqlType, int scale);
Object getObject(int parameterIndex);

As seen earlier with callable statements, it is necessary to register OUT parameters before executing the call and
accessing them. A Java object type corresponding to the SQL data type passed as parameter is returned.

Dynamically Typed Data Insertion/Update

Dynamically typed data insertion or update may only be performed through IN parameters of stored procedures or
prepared statements. Specific SQL data types may be explicitly targeted in accordance with Table 7-2.

Table 7-2CONVERSIONS BETWEEN JAVA OBJECT TYPES AND TARGET SQL TYPES

TINYINT SMALLINT INTEGER BIGINT REAL FLOAT

String J J J J J J

BigDecimal J J J J J J

Boolean J J J J J J

Integer J J J J J J

Long J J J J J J

Float J J J J J J

Double J J J J J J

byte[]

java.sql.Date

java.sql.Time

java.sql.Timestamp

DOUBLE DECIMAL NUMERIC BIT CHAR VARCHAR

String J J J J J J

BigDecimal J J J J J J

Boolean J J J J J J

Integer J J J J J J

Long J J J J J J

Float J J J J J J

Double J J J J J J

byte[]

java.sql.Date J J

java.sql.Time J J

java.sql.Timestamp J J

LONGVARCHAR BINARY VARBINARY LONGVARBINARY

String J J J J

BigDecimal J

Boolean J

Integer J

Long J

Float J

Double J

byte[] J J J

java.sql.Date J

java.sql.Time J

java.sql.Timestamp J

DATE TIME TIMESTAMP

String J J J

BigDecimal

Boolean

Integer

Long

Float

Double

byte[]

java.sql.Date J J

java.sql.Time J

java.sql.Timestamp J J J

A J means the conversion can be done. No support for Java streams is provided.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

CallableStatement or PreparedStatement
void setObject(int parameterIndex, Object x);
void setObject(int parameterIndex, Object x, int targetSqlType);
void setObject(int parameterIndex, Object x, int targetSqlType, int scale);

When no target SQL type is specified to the setObject() method, the Java object is directly converted according to the
default mapping as shown in Table 7-3. If a target SQL type is provided, the Java object is first mapped to its default
corresponding type and then converted to the specified SQL type (see Table 7-2).

Table 7-3DEFAULT MAPPING FROM JAVA OBJECT TYPES TO SQL TYPES

Java object type SQL type

String VARCHAR or LONGVARCHAR

java.math.BigDecimal NUMERIC

Boolean BIT

Integer INTEGER

Long BIGINT

Float REAL

Double DOUBLE

byte[] VARBINARY or LONGVARBINARY

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

Multithreading

JDBC is multithread safe. Several threads can call the same java.sql object simultaneously and perform operations
asynchronously. For example, multiple statements can be executed concurrently within the same connection. It does not
mean that all JDBC drivers are able to manage concurrent executions asynchronously, but even in this case, the
developer can assume fully concurrent executions. Indeed, fully JDBC-compliant drivers will serialize calls
automatically, even if they do not support asynchronous executions (i.e., where they are not multithread safe
themselves). Such behavior is totally transparent to the programmer, even if the driver provides some form of
synchronization. In this case, the application threads will run concurrently (a reduced concurrency).

Multithread support is exploitable to execute multiple statements on the same connection and to allow more control over
a running execution. Indeed, it is possible to cancel a long running statement in one thread using the Statement.cancel()
method of another thread.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

Summary

This chapter discussed advanced techniques of SQL and JDBC that add a professional touch to applications, including:

• Handling stored procedures from JDBC
• Dynamic SQL
• Fetching database metadata
• Dynamic data access

The next part of this book contains many working examples, from simple to complex, that cover most of the theory
discussed in previous chapters.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Chapter 8
The Three-Tier Approach for Using Distributed Objects

In This Chapter

This chapter discusses an alternative to the two-tier model. The Java Remote Method Invocation allows distribution of
objects across software tiers while providing an ideal place for the application logic. The areas discussed in this chapter
include:

• An introduction to software partitioning
• Object persistency
• Java Remote Method Invocation
• CORBA

The first chapters of this book mentioned the next wave of client-server architectures. This wave presents a philosophy
with a great impact on software design. Indeed, it changes the commonly accepted rules of implementing data access and
processing both at the client and the database sides. The following paragraphs discuss these issues, but try to keep things
simple while providing possible solutions in Java.

Recall the basics of traditional client-server architecture involving a relational database. As Figure 8-1 shows, Java
Database Connectivity (JDBC) is located on the client side. Most of the code that accesses and processes data uses JDBC
intensively and is also located on the client side. The code embeds the application logic— for example, Structured Query
Language (SQL) queries, information on data type conversions, and information on data structures. There is, however, a
part of the code located on the database side. Indeed, stored procedures also hold information on data or contain SQL
expressions to be executed by the database engine.

Figure 8-1: Two-tier architecture with JDBC on the client side.

It is very difficult to modify the code on both sides as often as the rules change. All clients that connect to the database
must be modified to reflect the new rules. Programmers know that it is annoying to maintain different pieces of software
that basically access the same data. The code of one program may barely import into another program even when
developed with the same programming language and tools. Approaches such as standard in-house developed libraries
address the problem but too often, do not totally solve it.

The idea of three-tier architecture involves moving most of the code that accesses and processes data into a third tier.
This tier basically holds all of the business logic necessary to run the clients, if not the business itself.

How does it work? Let’s begin with the easiest part: Almost nothing changes on the database side. It still maintains data

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
javascript:displayWindow('images/08-01.jpg',500,241)
javascript:displayWindow('images/08-01.jpg',500,241)

and holds the most important stored procedures or those that consume the most CPU cycles. It keeps its role of providing
concurrent accesses, integrity, recovery, and ease of data administration.

Clients no longer hold any bytecode that accesses data using SQL. They will never see rows of data. They will never
map these rows of data to local variables or object data members. Because the clients are written in Java and there are
only objects in Java, the clients will keep manipulating data as Java objects and will eventually call the appropriate
methods on these objects.

The remaining part is the most sensitive one: the third tier. This tier is a client of the database and, in a sense, a server for
the client applications. This tier holds the code to access data and SQL queries, using JDBC to perform its operations.
This is where rows of data are mapped into Java objects. For example, a query returning a list of employees would return
a set of Java objects called employee, and a method called raiseSalary could be invoked on individual employee objects
or a set of objects.

The client application uses employee objects and knows the raiseSalary method but they are not implemented within its
code. Shared objects are called proxy objects on the client side. They are implemented in the middleware and whenever
a client invokes the raiseSalary method, the raiseSalary method is triggered within the middleware, executing an SQL
update that will update the employee’s salary in the database. The object implementation is called the nonvisible object
— the implementation is not visible from the clients.

Figure 8-2 clearly illustrates the architecture. JDBC is located within the middleware.

Figure 8-2: The three-tier architecture with JDBC in the middleware.

Let’s discuss the software bus that ties proxy objects and nonvisible objects (NVOs) together. Actually, a big part of the
real implementation of three-tier architectures is dependent on this software bus. There are numerous possibilities but the
most common in Java are RMI and CORBA. RMI stands for Remote Method Invocation while CORBA stands for
Common Object Request Broker Architecture. These concepts are described later.

The rows of data must be mapped into Java object data members within the middleware. This hard work is necessary
because of the impedance mismatch between all object-oriented programming languages and SQL. By definition, the
data that is stored in database tables is persistent. All first-generation client-server clients were used to access persistent
data in tabular format through SQL, but now we want them only to manipulate objects.

Object Persistency

Usual Java objects or class instances are transient, unless they are serialized to a file. This simply means that they do not
persist outside of the application that instantiated them. Values fill data members at run time, and these data members are
garbage-collected and cleared when no longer used. Exiting the program destroys the objects.

If you use a proper object-oriented programming language such as Java, you may think that there should be a way to
avoid constructing essential objects each time you need them. Indeed, why should you need to perform the same
operations to build objects each time the program executes? There must be some way to avoid this rebuilding.

Object persistency is the solution. It allows you to keep objects data members alive, even when the application is not
running. There are many ways to make objects persistent (to persistify objects), and database management systems seem
well suited for this purpose. They offer many data-oriented services, plus a common query language. While SQL is used
within the scope of relational databases, an object query language (OQL) queries objects stored within object database
management systems (DBMS).

javascript:displayWindow('images/08-02.jpg',500,184)
javascript:displayWindow('images/08-02.jpg',500,184)

The most common DBMS is relational, not object-oriented; but it does not matter. It is easy to write methods to perform
the most basic tasks related to persistency. Here are a few of them:

• Creation of a new object
• Deletion
• Update
• Query that returns one object or a set of objects
• Duplication of objects (object cloning)

There is no need to define a custom query language to perform lookups on persistified objects; a single querySQLWhere
() method whose arguments are vectors of data member names and values is a good start.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

A word about mapping Java objects to tabular data in tables is necessary. Java classes may or may not extend (inherit
from) another class. We can simply map the data members of a class to corresponding fields of a table if the class is not
extending another. In this case, each record of the table represents an instance of the class. We call them persistified
objects. A design choice which is left to the developer is made when a class extends another class. Either an instance of
this class is mapped to a row in two different tables (one table per class) or it is mapped to only one table. In the latter
case, the table’s rows contain all the fields of the base class plus those of the inherited class. This second approach can
be more efficient because it does not require joining multiple tables when trying to access the persistified objects. Figure
8-3 shows how to map simple objects to a table.

Figure 8-3: Mapping of Java object versus traditional DBMS object.

Figure 8-3 illustrates the parts of a persistified object:

• The client side only sees data members and methods of persistified objects
• The database only stores data members in its tables
• The middleware provides basic methods to handle persistified objects; it does the mapping and provides
application-logic related methods

To summarize, persistification occurs in the middleware and provides a longer lifetime to application-essential objects.
Now it is time to discover a few ways to have transparent access to persistified Java objects.

Java Remote Method Invocation

Java RMI is a Java-to-Java remote object technology similar to remote procedure calls (RPC). It allows you to create
distributed applications in which the methods of Java objects may be invoked from programs running on other virtual
machines, at other locations of the network.

RMI may solve the issue of accessing middleware object instances from clients. It is light, reliable, and works over TCP/
IP (Transmission Control Protocol/Internet Protocol) and the Internet.

How can it be implemented in our three-tier architecture? Java clients must obtain a reference to the remote object that
resides in the middleware. RMI provides a bootstrap naming service mechanism for that purpose, which is Uniform
Resource Locator (URL)-based. Clients obtain references to registered remote objects and then invoke methods on these
objects. Parameters pass as method arguments, as is usual with any method. Using Javasoft’s object serialization
technique, the RMI protocol does the marshaling and unmarshaling to convert Java types to a stream of bytes and this
stream of bytes back to Java types. The RMI wire protocol transmits this stream of bytes on networks. Simple, isn’t it?
An example of a Java application using RMI is found in Chapter 10.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
javascript:displayWindow('images/08-03.jpg',500,371)
javascript:displayWindow('images/08-03.jpg',500,371)

Other Techniques

Other techniques are usable as a reliable software bus between clients and middleware. CORBA (Common Object
Request Broker Architecture), defined by the Object Management Group (OMG), is a complete architecture for
distributing objects. It is the most serious, consistent, and robust approach to distributed computing available.

Many vendors already have CORBA-compliant products ranging from mainframe-class to PC-class. Products that
comply with the CORBA 2.0 standard are interoperable, which means that they may be used in mixed environments.
They can use a large number of network transport protocols including TCP/IP, which is used on the Internet. (IIOP,
which stands for Internet Inter-ORB Protocol, is an implementation of GIOP, the Generic Inter-ORB Protocol, and
works with TCP/IP.) State-of-the-art administration, integration, and development tools are usually bundled with
CORBA software, as is the case with SunSoft Solaris NEO.

Joe

Joe is Sun’s solution to enable Java applications and applets to connect to CORBA environments such as Solaris NEO. It
includes a Java Object Request Broker (an ORB), which connects applets to remote NEO objects running on any
machine across the Internet. Networked objects may then be used from applets and applications.

OMG’s Interface Definition Language (IDL) can generate Java class stubs. IDL files are standard CORBA object
interface files and provide language independence. The distributed objects may be implemented in a variety of languages
such as C and C++, but Java is used because the database access is through JDBC on the middle tier.

Summary

This chapter discussed an alternative to the two-tier model. Using the Java Remote Method Invocation, it is possible to
distribute objects across software tiers while providing an ideal place for the application logic. The topics discussed
were:

• An introduction to software partitioning
• Object persistency
• Java Remote Method Invocation
• CORBA

The next chapter discusses design issues for the Internet and intranet, as well as possible implementation choices.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Chapter 9
Design Issues

In This Chapter

This chapter discusses design issues for the Internet and intranet, as well as implementation and platform choices. The
issues discussed include:

• Intranet/Internet
• 100 percent Java or non-100 percent Java
• Choosing a database management system (DBMS)

Although there are many issues that may be discussed regarding real-world applications for the Internet or the intranet,
this chapter focuses on those that are likely to be the most important ones for your current and future projects.

Intranet/Internet

There are many differences between the Internet and an intranet. The main differences are:

• The Internet is “wild.” There are millions of “netizens” on the Internet, all with different interests. Millions of
users also means a heavy load on the Internet.
• Many different services are provided on the Internet, each using a dedicated protocol. In some cases, different
implementations of the same service are not fully interoperable.
• Content, location, and free access are subject to change on the Internet, especially on the World Wide Web
(WWW).
• The number of users within an intranet is usually stable and known. This environment is a trusted
environment.
• Services provided on the intranet are clearly identified, documented, allowed or denied, and cached for
performance. The most reliable protocols are used and they never conflict.
• Data content, information sources, authors, access, and privileges are better defined on the intranet.

As the foregoing shows, the intranet is a secure environment. The Internet, the network of networks, is not a secure
environment. This lack of security engenders a number of problems that may affect Internet services using Java Database
Connectivity (JDBC) to connect to corporate databases.

The Number of Simultaneous Users

While the number of simultaneous intranet users is somewhat predictable, it is not possible to determine the number of
simultaneous users of a service on the Internet. Some sites record millions of hits a day on their Web pages and their hit-
rate changes day after day. Consider an order-entry application used exclusively within an intranet and an online stock
exchange information system on the Internet. It is very difficult to estimate the number of visitors interested in watching
stock quotes, while it is very easy to locate the employees who will need to access the order-entry system. Among other

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

problems, the following problems may appear on a system not entirely designed for the Internet:

• With too many users logged in at the same time, the database management system is unable to handle more
sessions.
• With too many users simultaneously performing heavy queries, the response time is unacceptable.
• Users log in on a per-user basis, are assigned a new nickname, and choose a personal password. There is one
database user-identifier per new user. The database may not be able to handle millions of log-in entries in its
system tables.

There are solutions to these problems, but they may not be best suited for your purposes. One solution is to replicate the
databases.

Replication

Replication allows more users to log in at the same time, while spreading the load on different servers. In such an
architecture, multiple sites replicate the data. A Java application can try to connect to one of these replication servers. If
it does not succeed, it can try to connect to the next one, continuing until it connects. From a programming viewpoint,
the Java application can be implemented using successive try-catch blocks, each passing a different JDBC Uniform
Resource Locator (URL) using the DriverManager getConnection() method. Consider these four URLs:

jdbc:dbdrv://www.mydomain.com:8192/db1
jdbc:dbdrv://www2.mydomain.com:8192/db2
jdbc:dbdrv://relay1.mydomain.sf.ca.us/db3
jdbc:dbdrv://relay2.mydomain.sf.ca.us/db4

Assume your enterprise has a fast backbone linking the different sites and database replication occurs real-time. If the
successive try-catch blocks are used to try to connect to a data source, there is a greater chance the user will connect to a
database and the application will behave independently of the actual data source. It may not work with applets. Some
Web browsers do not allow an applet to connect to another server other than the server it came from.

Latency

The Internet is quite crowded today. Even upgrading a provider’s lines every day will not increase its throughput
significantly until gigabit backbones become available. As a result, the response time to obtain a connection to a server
may be long. The data transfer rate may also be very slow. Like many other Internet services, database servers suffer
from this inherent and unpredictable latency. Indeed, the connection context consumes a fair amount of database
resources, and the more waiting users on a system, the more load on the database server.

There is only one solution to this problem: keep the database transactions as short as possible. Do not keep an
unnecessary connection open. Many users function in a stateless manner, and most of them will probably interrupt their
connection by simply switching to another WWW site.

One Login Per Type of Application

Even for services that are customer-customized, it may not be a good idea to assign a different database user ID for each
user. A better approach is to assign specific database IDs per group of users or, if possible, a unique database login for
the whole application. In other words, it may be feasible to handle as many different user profiles as possible using a few
or even a single database login. In the latter case, the application would be responsible for storing in dedicated tables
everything that is user-dependent. In many situations a unique application login will suffice.

The reason is that managing thousands of users, changing every day, may be hell for a database administrator. This is not
so for a service administrator, so delegate all identification, authentication, and authorization issues to the service
administrator. This information will lay in a table along with connection information, and a billing application, for

example, could exploit it.

Security Issues

Security issues apply to stand-alone applications, JDBC and untrusted applets, and firewalls.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Stand-alone Applications

Stand-alone Java applications are considered trustworthy. They have full access to the local file system as does any other
application. They are allowed to call native libraries and open network connections to any host.

There should be, however, one restriction. As with applets, if an untrusted sun.sql.Driver class is dynamically loaded
from a remote networked source, then use that driver only with code loaded from that source.

JDBC and Untrusted Applets

JDBC follows the standard applet security model, which imposes fairly onerous restrictions for untrusted applets. In
particular, JDBC uses these rules:

• It assumes that normal unsigned applets are untrustworthy.
• It does not allow applets to access to local database data such as registry or configuration files.
• If a downloaded JDBC Driver registers itself with the JDBC DriverManager, then JDBC will only use that
driver to satisfy connection requests from code that has been loaded from the same source as the driver.
• It does not allow an untrusted applet to open a database connection to a server that is not the server it was
downloaded from.
• JDBC does not make any automatic nor implicit use of local credentials when making connections to remote
database servers.

JDBC does not encrypt the data it sends over the Internet. Indeed, JDBC is not a network protocol nor a database
protocol. If connection encryption is necessary, choose a database that supports encryption in its protocol. In this case,
this specific database management system’s JDBC driver will encrypt/decrypt the data as necessary.

Firewalls

Firewalls protect intranets. They simply filter incoming and outgoing connections with regard to their IP addresses and/
or TCP/IP ports. A simple example is the firewall that only allows WWW, Usenet News, and e-mail to be used. It stops
all packets running on ports other than 80, 119, and 25, respectively.

Actually, all connection attempts make their requests to these well-known ports. Once the connection is established, it
shifts to another free port. JDBC and JDBC drivers use TCP/IP ports to communicate with database servers. The only
thing to do when a firewall is present is to allow data to transit on the port used by your database protocol. The database
administrator has a good idea of which port(s) are used by the database management system. So, the operation simply
consists of opening an adequate door on the firewall machine.

One Hundred Percent Database Independent

In some cases, it is useful to write code that is 100 percent independent of the underlying database. Such a requirement is
mandatory for programmers who develop CASE tools, data import/export utilities, or DBMS administration tools in

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

Java.

Fortunately, JDBC is inherently 100 percent database independent. All DBMS-specific features are provided through
JDBC drivers that have enough database knowledge to handle these features. The JDBC metadata interfaces are
sufficiently complete to build database-independent code in Java.

In the case of applets, the name of the JDBC driver and the database URL string are passed as parameters for maximum
flexibility. The only thing to change when switching from one DBMS to another is the HTML file that contains these
applet parameter tags. Listing 9-1 is an example:

Listing 9-1: Passing parameters to an applet.

...

..-.
<applet code=myApplet width=500 height=600>
<param name=driver value=connect.sybase.SybaseDriver>
<param name=connection
value='jdbc:sybase://dbms.mydomain.com:8192/demodb;user=guest;
password=guest'>
...
...

The applet must parse its parameters to discover the driver to load and the database URL to use. The driver code (Java
classes) does not have to be present on the client; it can reside on the server side and downloads dynamically upon
execution of the applet. The code to fetch parameters from an applet, shown in Listing 9-2, is quite simple:

Listing 9-2: Getting parameters from an applet.

...

...
String driver;
String url;
Connection conn;
driver = getParameter("driver");
if (driver != null)
Class.forName(driver).newInstance();
url = getParameter("connection");
if (url != null)
conn = DriverManager.getConnection(url);
...
...

One Hundred Percent Java or Non-100 Percent Java

One hundred percent Java-based applications or applets may run on all-Java network devices such as the Sun
Microsystems, Inc.’s JavaStation. Such devices are the first wave of a seismic shift in the computer industry.

JDBC is, fortunately, all-Java. Programs and applets developed with JDBC are portable, but some JDBC drivers are not
portable. Indeed, all those using local native libraries are not portable, although they may be available for a variety of
platforms. Furthermore, they have to be installed on a client machine before an application can use them. They cannot be
downloaded automatically from the network.

The problem is that there are only a few all-Java JDBC drivers available. Others will appear quickly, but what can we do
today, for example, to use JDBC within applets to connect to a poorly supported database?

The best solution is to use a middle tier. Many JDBC endorsees now develop and sell three-tier bridges to place in front
of common enterprise class database management systems. Many developers offer evaluation copies, making it is easy to
experiment and determine which is the right solution for your project. Another solution is to code the middle tier
yourself. It is doable using Java RMI. A simple working example is provided later.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Choosing a DBMS

It is important to choose the right DBMS. While many intranet projects are based on existing architectures and
databases, projects related to the Internet open the door to change. The following is worth considering when choosing a
DBMS:

• Tools to facilitate the importation of external data in various formats, including binary formats, should
accompany the DBMS. Such tools are available from both database vendors and third parties.
• The DBMS should be supported on a variety of platforms and operating systems in case the project grows
faster than expected and the platform’s limits are reached too quickly.
• The DBMS should offer optimum and proven security.
• The DBMS must be able to handle hundreds of simultaneous connections during peaks.
• For greater convenience, the DBMS should be remotely administrable. For Internet service, the service must
be provided 24 hours a day.
• Other resource-hogging user or network applications running on the same platform should not be affect the
DBMS on a stability point-of-view (this is more related to the operating system than to the DBMS software).
• The DBMS must support online backup facilities as well as consistency checking and repair.
• Replication facility is an extra.

All relational DBMSs (RDBMS) offer nearly equivalent facilities, security, and performance levels. ODBMSs (Object
Database Management Systems) are superior to RDBMSs as regards retrieval of multimedia content. A performance
improvement factor of 10 or more is sometimes observed, which is important to consider if the database will hold
hundreds or thousands of multikilobyte binary objects. ODBMSs are also very attractive to object-oriented developers.
Performance sometimes decreases when a large number of relations between entities is present.

Finally, the choice of the DBMS platform seems to be more important than the choice of the DBMS software itself.
While personal computer-based DBMSs may be very convenient during the development phase, their cost/performance
factor is much higher than open systems-based DBMSs when supporting a relatively high number of simultaneous
connections. Do not compare CPU (central processing unit) power because one architecture is not scalable while the
other is. Be aware that the I/O (input/output) subsystem is often the bottleneck. Unix is the best platform when thousands
of simultaneous TCP/IP network connections are involved because TCP/IP is part of the heart of the operating system.

In addition, you should consider purchasing a DBMS and hardware platform that are fully scalable without involving
replication of the data, the DBMS software, and the platform itself. Almost all serious DBMSs may be dynamically
reconfigured each time new hardware is added to the platform as, for example, when adding CPU chips on the main
board.

Summary

This chapter discussed design issues for the Internet and intranet scenarios, as well as possible implementation choices
and platform choices.

This is the end of Part III. The next part is dedicated to complete, working examples using JDBC.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Part III
Working Examples

Chapter 10: Examples

Part III contains numerous working examples, from the simple to the complex, depicting particular aspects of database
integration with JDBC. Among other tasks, you will program applications and applets for: handling normal rows of data,
handling BLOBs to insert and retrieve multimedia content to and from database tables, respectively, exploring the
objects of a DBMS on-the-fly, and for simple database access in a three-tiered environment using distributed Java
objects with RMI.

Chapter 10
Examples

In This Chapter

This chapter provides many examples of Java applets or stand-alone applications. Each example covers a particular topic
discussed in this book. The source code for all the examples is included on the accompanying CD-ROM. In this chapter,
we discuss:

• A simple ISQL clientBullets
• Handling BLOBS from the command line
• A Java Automatic Teller Machine
• Flying with JDBC Airlines
• A graphical database surfer
• An advanced example using Remote Method Invocation

Handling Normal Rows

Almost all database applications written in Java will handle normal rows of data. SQL (Structured Query Language) only
provides ways of inserting and extracting data in tabular format, while permitting complex queries to be issued.

Simple ISQL Client Application

This example shows how to handle normal rows of data in a simple way. ISQL stands for “Interactive SQL” client,
which means that it can be used to send queries to a database and then retrieve the results in a text-based interface. This
ISQL client is a stand-alone Java application.

As shown in Figure 10-1, once launched, a number of questions appear on the screen. The questions prompt you for a
Java Database Connectivity (JDBC) Uniform Resource Locator (URL), a database log in, and a database password. SQL
queries are then entered from the keyboard, and the results immediately appear on the screen. It is really a primitive

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

ISQL client. It supports SQL updates and multiline queries, however.

Figure 10-1: The ISQL stand-alone application.

As Figure 10-1 shows, this simple ISQL stand-alone application runs in a terminal window. Its input is taken from the
standard input, and its output is directed to the standard output. Default values are provided for connection parameters
just for ease of use.

Listing 10-1 gives you an example of an ISQL session. It uses a database with only three tables: clients, accounts, and
transaction history. These tables are used in another example later in this chapter.

Listing 10-1: Simple Java ISQL.

Enter the url or [ENTER] for jdbc:odbc:netbank :
Enter the login or [ENTER] for dba :
Enter the passwd or [ENTER] for default :
Type 'quit' on a blank line to exit, or 'go' to execute the query.
1> select * from clients
2> go
ownerno, name, address
1, Bernard Van Haecke, Brussels, 1000
2, John Doe, Imola Circuit, KM83
3, Jane Doe, Imola Circuit, KM83
4, Santa Klaus, North Pole, 1
5, Little Duke, Java Islandd, 1
6, The Bank, Downtown LA
1> select name, acctno, balance
2> from clients, accounts
3> where clients.ownerno = accounts.ownerno
4> order by balance
5> go
name, acctno, balance
Little Duke, 5, -840
Jane Doe, 3, 320600
Bernard Van Haecke, 1, 991900
John Doe, 2, 1256050
Santa Klaus, 4, 8892750
The Bank, 6, 999999995904
1> select distinct typetransaction
2> from history
3> go
typetransaction
Received
Transfert
Withdraw
1> select sum(balance)
2> from accounts
3> go
sum(balance)

javascript:displayWindow('images/10-01.jpg',609,485)
javascript:displayWindow('images/10-01.jpg',609,485)

1000011464704
1> update accounts
2> set balance = balance + (balance * 0.05)
3> go
6 row(s) affected.
1> quit

There is only one class for this example: the class ISQL handles everything. The class constructor initializes the database
connection and then calls a method that handles the user’s input in a loop to allow entry of multiple queries. Keywords
“go” and “quit” are caught to process a query or quit the application. The database connection is closed when a “quit” is
issued or a fatal error occurs. Listing 10-2 shows the source code for this ISQL client.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Listing 10-2: An Interactive SQL Client.

import java.sql.*;
import java.io.*;
import java.util.*;
public class isql {
 static DataInputStream kbd = new DataInputStream(System.in);
 static String url = "jdbc:odbc:netbank";
 static String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
 static String login = "dba";
 static String passwd = "javabank";
 static Connection curConn = null;
 public static void main(String argv[]) throws IOException
 {
 String temp = "";
 System.out.println("Simple Java Isql, by Bernard Van Haecke, 1996.\n");
 System.out.print("Enter the url or [ENTER] for " + url + " : ");
 System.out.flush();
 temp = kbd.readLine();
 if (!temp.equals("")) url = temp;
 System.out.print("Enter the login or [ENTER] for " + login + " : ");
 System.out.flush();
 temp = kbd.readLine();
 if (!temp.equals("")) login = temp;
 System.out.print("Enter the passwd or [ENTER] for default : ");
 System.out.flush();
 temp = kbd.readLine();
 if (!temp.equals("")) passwd = temp;
 isql session = new isql();
 }
 public isql() throws IOException
 {
 try {
 Class.forName(driver);
 curConn = DriverManager.getConnection(url, login, passwd);
 checkForWarnings(curConn.getWarnings ());
 }
 catch(java.lang.Exception ex) {
 System.out.println("url : " + url);
 System.out.println("login : " + login);
 System.out.println("passwd : " + passwd);
 ex.printStackTrace();
 return;
 }
 processQueries();
 finalize();
 }

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

 protected void finalize()
 {
 try {
 curConn.close();
 }
 catch (SQLException ex) { }
 }
 private void processQueries() throws IOException
 {
 int i = 1;
 String temp = "";
 String query = "";
 String results = "";
 System.out.println("Type 'quit' on a blank line to exit, or 'go' to
execute the query.");
 do {
 System.out.print(i + "> ");
 System.out.flush();
 temp = kbd.readLine();
 if (temp.equals("quit"))
 break;
 if (temp.equals("go")) {
 executeThisQuery(query);
 i = 1;
 query = " ";
 }
 else {
 query = query + " " + temp;
 i++;
 }
 } while (true);
 }
 private void executeThisQuery(String sqlText)
 {
 boolean resultSetIsAvailable;
 boolean moreResultsAvailable;
 int i = 0;
 int res=0;
 try {
 Statement curStmt = curConn.createStatement();
 resultSetIsAvailable = curStmt.execute(sqlText);
 ResultSet rs = null;
 for (moreResultsAvailable = true; moreResultsAvailable;)
 {
 checkForWarnings(curConn.getWarnings());
 if (resultSetIsAvailable)
 {
 if ((rs = curStmt.getResultSet()) != null)
 {
 // we have a resultset
 checkForWarnings(curStmt.getWarnings());
 ResultSetMetaData rsmd = rs.getMetaData();
 int numCols = rsmd.getColumnCount();
 // display column headers
 for (i = 1; i <= numCols; i++)
 {
 if (i > 1) System.out.print(", ");
 System.out.print(rsmd.
 getColumnLabel(i));

 }
 System.out.println("");
 // step through the rows
 while (rs.next())
 {
 // process the columns
 for (i = 1; i <= numCols; i++)
 {
 if (i > 1) System.out.print(", ");
 System.out.print(rs.
 getString(i));
 }
 System.out.println("");
 }
 }
 }
 else
 {
 if ((res = curStmt.getUpdateCount()) != -1)
 {
 // we have an updatecount
 System.out.println(res + " row(s) affected.");
 }
 // else no more results
 else
 {
 moreResultsAvailable = false;
 }
 }
 if (moreResultsAvailable)
 {
 resultSetIsAvailable = curStmt.getMoreResults();
 }
 }
 if (rs != null) rs.close();
 curStmt.close();
 }
 catch (SQLException ex) {
 // Unexpected SQL exception.
 ex.printStackTrace ();
 }
 catch (java.lang.Exception ex) {
 // Got some other type of exception. Dump it.
 ex.printStackTrace ();
 }
 }
 private static void checkForWarnings (SQLWarning warn)
 throws SQLException
 {
 while (warn != null) {
 System.out.println(warn);
 warn = warn.getNextWarning();
 }
 }
}

Simple ISQL Client Applet

Here is another ISQL client. It is different from the previous example because it runs as an applet. Anyone with a Java-
enabled World Wide Web (WWW) browser can load the hypertext markup language (HTML) file containing the applet
tag that calls this applet. The logic to execute the SQL statements is similar to the logic of the command-line ISQL
example.

A 100-percent Java JDBC driver must be supplied with such an applet. The JDBC-ODBC Bridge, for example, would
not work because it calls native methods to talk to ODBC. “All-Java” drivers are becoming available as more and more
developers implement the JDBC Driver Application Programming Interface (API). Good examples are Sybase’s
jConnect and Connect Software’s FastForward JDBC driver.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

It is remarkably simple to provide the 100-percent Java JDBC driver classes to the calling browser: the classes — the
JDBC driver package — must be available in the directory where the applet resides. As soon as the Java applet is loaded
in the virtual machine running in the WWW browser, the class loader notices that it needs additional classes, and a call
to Class.forName() dynamically loads the appropriate driver class. The Hypertext Transport Protocol (HTTP)
server then sends the requested classes.

Snapshot of the Applet

As shown in Figure 10-2, the applet lets you enter a SQL query in a floating window.

Figure 10-2: The ISQL applet.

Clicking the “Go!” button sends the query to the database and retrieves the results. Figure 10-3 shows the resulting rows
of data displayed in another floating window.

Figure 10-3: Executing SQL statements.

The graphical user interface (GUI) part of this applet was done using Marimba Bongo, which generates a 100 percent
portable .gui file containing the persistified GUI objects. This file contains a persistent form of the widgets used in this
example. The .gui file is editable using Marimba Bongo, a demo version of which is on the CD-ROM accompanying this
book. The unzipped Marimba classes must be in the CLASSPATH or available in the applet’s home directory on the
WWW server to run this example.

The HTML File

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
javascript:displayWindow('images/10-02.jpg',527,592)
javascript:displayWindow('images/10-02.jpg',527,592)
javascript:displayWindow('images/10-03.jpg',527,592)
javascript:displayWindow('images/10-03.jpg',527,592)

The following is the HTML file that calls the applet. The connection parameters are passed as arguments to the applet
for greater convenience. These parameters specify which JDBC driver to load and which database URL to use.

<applet
name="jsql"
code="jsql.class"
width="430"
height="390"
align="Top"
alt="If you had a java-enabled browser, you would see an applet here."
>
<param name="driver" value="com.sybase.jdbc.SybDriver">
<param name="url" value="jdbc:sybase:Tds:database.eng:8192">
<param name="login" value="guest">
<param name="password" value="javabank">
<param name="catalog" value="javabank">
<hr>If your browser recognized the applet tag,
you would see an applet here.<hr>
</applet>

Source

Listing 10-3 contains the source code for the ISQL applet example. Remember that the Marimba classes must be in the
CLASSPATH or in the applet’s home directory on the WWW server to run.

Listing 10-3: An Interactive SQL Applet.

import java.awt.*;
import java.sql.*;
import java.lang.*;
import java.util.*;
import java.net.*;
import marimba.gui.*;
public class jsql extends java.applet.Applet {
Presentation presentation;
PlayerPanel player;
PlayerUtil util;
Connection conn = null;
DatabaseMetaData mtdt = null;
ResultSet rs = null;
/**
* initialize the applet
*/
public void init() {
try {
 presentation = Presentation.getPresentation(new URL(getDocumentBase(),
 "jsql.gui"));
}
catch (MalformedURLException ex) {
 ex.printStackTrace();
}
// create a player panel
setLayout(new BorderLayout());
add("Center", player = new PlayerPanel());
// set the presentation
player.setPresentation(presentation);

// create a player utility object
util = new PlayerUtil(player);
// load applet parameters
((ChoiceWidget) util.getWidget("dataURL")).addChoice(getParameter("url"));
((ChoiceWidget) util.getWidget("dataDriver")).addChoice(getParameter
("driver"));
 util.setText("dataLogin", getParameter("login"));
 util.setText("dataPasswd", getParameter("password"));
 util.setText("dataCatalog", getParameter("catalog"));
 // add some jdbc connection choices
 // jdbc-odbc bridge
 addDriverInfo("jdbc:odbc:data-source-name",
 "sun.jdbc.odbc.JdbcOdbcDriver");
 // sybase's driver
 addDriverInfo("jdbc:sybase:Tds:host.domain.com:8192",
 "com.sybase.jdbc.SybDriver");
 // connect software's sybase driver
 addDriverInfo("jdbc:sybase://host.domain.com:8192",
 "connect.sybase.SybaseDriver");
 // funny driver
 addDriverInfo("foo:bar:database", "foo.bar.Driver");
}
/**
* add a new entry in the url and driver listboxes
*/
public void addDriverInfo(String url, String driver)
{
// add entry for this driver provider
((ChoiceWidget) util.getWidget("dataURL")).addChoice(url);
((ChoiceWidget) util.getWidget("dataDriver")).addChoice(driver);
}
/**
* we handle all gui events here
*/
public boolean handleEvent(Event evt)
{
try {
 if ((evt.id == Event.ACTION_EVENT) && (evt.target instanceof Widget)) {
 Widget w = (Widget)evt.target;
 String nm = w.getName();
 if (nm != null) System.out.println("Event: " + nm);
 // The user has logged in.
 if (nm.equals("dataLoginButton")) {
 String url = util.getText("dataURL").trim();
 String uid = util.getText("dataLogin").trim();
 String pwd = util.getText("dataPasswd").trim();
 String catalog = util.getText("dataCatalog").trim();
 String driver = util.getText("dataDriver").trim();
 try {
 Class.forName(driver);
 conn = DriverManager.getConnection(url, uid, pwd);
 if (conn != null) {
 mtdt = conn.getMetaData();
 conn.setCatalog(catalog);
 }
 }
 catch (SQLException ex) {
 System.out.println(ex);
 }

 catch (java.lang.Exception ex) {
 System.out.println(ex);
 }
 }
 // The user has clicked logout
 if (nm.equals("dataLogoutButton")) {
 if (conn != null) {
 conn.close();
 }
 }
 // execute the sql query
 if (nm.equals("isqlGoButton")) {
 String query = util.getText("isqlQueryText");
 if (true)
 {
 TableWidget tbl = (TableWidget)
 util.getWidget("isqlResultTable");
 tbl.removeAllRows();
 tbl.removeAllColumns();
 util.show("isqlResultWindow", true);
 ResultSet rs = getSingleRS(query);
 Vector headers = getRSColumnHeadersAsVector(rs);
 int i;
 for (i=0; i<headers.size(); i++)
 // tbl.addColumn((String)
 headers.elementAt(i), ((String) headers.elementAt(i)).length
());
 tbl.addColumn((String) headers.elementAt(i));
 Vector rows = getRSRowsAsVector(rs);
 for (i=0; i<rows.size(); i++)
 tbl.addRow((Vector) rows.elementAt(i));
 rs.close();
 }
 }
 // close the isql result window
 if (nm.equals("resultCloseButton")) {
 util.show("isqlResultWindow", false);
 }
 }
}
catch(java.lang.Exception ex) {
 ex.printStackTrace();
}
return super.handleEvent(evt);
}
/**
* return the resultset of a simple query
*/
public ResultSet getSingleRS(String sqlText)
{
 ResultSet rs = null;
 int res;
 try {
 Statement st = conn.createStatement();
 if (st.execute(sqlText)) {
 // okay it's not an update count
 rs = st.getResultSet();
 }

 else if ((res = st.getUpdateCount()) != -1) {
 // it's an update count
 // we could could display it
 }
 } catch (SQLException ex) { ex.printStackTrace(); }
 return rs;
}
/**
* return the column headers of a resultset as vector
*/
public Vector getRSColumnHeadersAsVector(ResultSet rs) {
 int i;
 Vector v = new Vector();
 try {
 ResultSetMetaData rsmd = rs.getMetaData();
 int numCols = rsmd.getColumnCount();
 // fetch column headers
 for (i = 1; i <= numCols; i++)
 {
 v.addElement(rsmd.getColumnLabel(i));
 }
 }
 catch (SQLException ex)
 {
 }
 return v;
}
/**
* return a resultset as vector
*/
public Vector getRSRowsAsVector(ResultSet rs) {
ProgressIndicatorWidget bar = (ProgressIndicatorWidget) util.getWidget
("sqlProgressBar");
 int barValue = 0;
 Vector v = new Vector();
 Vector r = null;
 int i;
 try {
 ResultSetMetaData rsmd = rs.getMetaData();
 int numCols = rsmd.getColumnCount();
 bar.setValue(0);
 // step through the rows
 while (rs.next())
 {
 // process the columns
 r = new Vector();
 for (i = 1; i <= numCols; i++)
 {
 r.addElement(rs.getString(i));
 }
 v.addElement(r);
 if (barValue < 100) {
 barValue = barValue + 10;
 }
 else {
 barValue = 0;
 }
 bar.setValue(barValue);
 bar.repaint();

 }
 }
 catch (SQLException ex)
 {
 }
 return v;
}
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Applet: JDBC Airlines

Looking for online airline information? Choose JDBC Airlines! This applet illustrates remote access to a database
through a nice user interface. The example runs as an applet within World Wide Web browsers that support Java. It uses
JDBC to connect and retrieve flight schedules from a database. No middleware is involved. The JDBC driver used for
this example is a 100-percent Java driver that directly connects to the database server. Figure 10-4 shows the JDBC
Airlines applet.

Figure 10-4: Connect Software’s JDBC Airlines applet.

This is an example from Connect Software, Inc. Thanks to its 100-percent Java drivers, this applet is able to run within
any Java-compatible WWW browser. Again, no specific classes must be preinstalled on the client machine. The JDBC
driver downloads from the Web server along with the applet classes.

The HTML File

The HTML file contains the tag to load the applet as well as parameters that provide connection information to this
applet. Such connection information includes the driver to use to connect to the database and the database’s URL.

<html>
<head>
<title>
Airplet, the Airline Applet by Connect Software
</title>
</head>
<body bgcolor="#FFFFFF">
<center>

<p>
<applet code=airplet.Airplet width=500 height=600>
<param name=driver value=connect.sybase.SybaseDriver>
<param name=connection value='jdbc:sybase://db.mydomain.com:8192/airline;
user=guest;password=guest'>
</center>
</applet>

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
javascript:displayWindow('images/10-04.jpg',632,773)
javascript:displayWindow('images/10-04.jpg',632,773)

</html>

Airplet.java

Airplet.java is the main applet class. Initialization establishes a connection with the database server. As soon as the
connection is established, various panels are prepared and displayed. These panels include a panel with name and preset
choices for departure and arrival airports, a panel with search and roundtrip buttons, and a panel with maps and routes
between airports.

User events are handled when selecting airport choices and clicking search or roundtrip buttons. A search for flights
from the origin to the destination is performed. A method is also provided to load map images from the server.

Listing 10-4 shows the source code for the main part of the applet, Airplet.java.

Listing 10-4: Airplet.java.

//
// Airplet.java - Connect Software's Airline Applet, a.k.a. jdbc airlines
//
// Copyright (C) 1996 by Connect Software. All rights reserved.
//
// Written by Gionata Mettifogo, Peter Ham.
//
// Connect Software, Inc.
// 81 Lansing Street, Suite #411
// San Francisco, CA 94105
// (415) 710-1544 (phone) - (415) 543-6695 (fax)
//
// email: info@connectsw.com - www: http://www.connectsw.com
package airplet; // airplet's package
import java.applet.*; // import a number of java libraries
import java.awt.*;
import java.io.*;
import java.net.*;
import java.util.*;
import jdbc.sql.*; // import modified jdbc libraries
public class Airplet extends java.applet.Applet // main applet class
{
 private TextField nameTo = null; // names of departure and arrival airports
 private TextField nameFrom = null;
 private AirportChoice choiceTo = null; // preset lists of departure and
arrival airports
 private AirportChoice choiceFrom = null;
 private FlightsPanel panelFlights = null; // panel containing maps and
flights listings
 /** Initialize the applet, opens the connection with the database and add user
interface
 items in the applet. */
 synchronized public void init()
 {
 airplet = this; // static reference to this airplet
 setBackground(Color.white); // white background for this applet
 LayoutManager columnLayout = new ColumnLayout(5,5); // all panels go in a
 single column
 setLayout(columnLayout);
 showStatus("Connecting..."); // let user know we're

connecting to the database
 try
 {
 String driver = getParameter("driver"); // use sql driver specified
in
 'driver' parameter
 if(driver != null) Class.forName(driver).newInstance(); // register
driver
 with DriverManager
 String url = getParameter("connection"); // get connection's url
 connection = DriverManager.getConnection(url); // establish
connection
 with server
 }
 catch(Exception sqlEx)
 {
 System.out.println("Connection failed because " + sqlEx + "\n");
 }
 showStatus("Preparing...");
 try
 {
 Panel panelFrom = new Panel(); // create panel with name and preset
 choices for departure's airport
 ImageCanvas imageFrom = new
 ImageCanvas("images/airFrom.gif"); panelFrom.add(imageFrom);
 nameFrom = new TextField(25); panelFrom.add(nameFrom);
 choiceFrom = new AirportChoice(); panelFrom.add(choiceFrom);
 Panel panelTo = new Panel(); // create panel with name and preset
 choices for arrival's airport
 ImageCanvas imageTo = new ImageCanvas("images/airTo.gif");
 panelTo.add(imageTo);
 nameTo = new TextField(25); panelTo.add(nameTo);
 choiceTo = new AirportChoice(); panelTo.add(choiceTo);
 Panel panelButtons = new Panel(); // panel with search and roundtrip
 buttons
 Button button1 = new Button("Search"); panelButtons.add(button1);
 Button button2 = new Button("Roundtrip"); panelButtons.
add(button2);
 panelFlights = new FlightsPanel(); // panel with maps and routes
 add(panelFrom); // add all panels to the applet
 add(panelTo);
 add(panelButtons);
 add(panelFlights);
 showStatus("Connect Software, 1996."); // here we are!
 }
 catch(SQLException sqlEx) { showStatus("Sorry, could not initialize, e-
mail
 support@connectsw.com"); }
 }
 /** Responds to user selecting an airport in the choice menus or clicking
search or
 roundtrip. */
 public boolean action(Event iEvent,Object iArgument)
 {
 if(iEvent.target == choiceFrom) // user picked an origin from the choices
 {
 Airport air = choiceFrom.getSelectedAirport();
 nameFrom.setText(air.getName()); // copy origin's name to origin's

text
 field
 return true;
 }
 if(iEvent.target == choiceTo) // user picked a destination from the
choices
 {
 Airport air = choiceTo.getSelectedAirport();
 nameTo.setText(air.getName()); // copy destination's name to
destination's text
 field
 }
 if(iArgument.equals("Search") || iArgument.equals("Roundtrip")) // search
for
 flights from origin to destination
 {
 String airFrom = nameFrom.getText();
 if(airFrom.length() < 1) airFrom = choiceFrom.getSelectedItem();
 String airTo = nameTo.getText();
 if(airTo.length() < 1) airTo = choiceTo.getSelectedItem();
 searchFlights(airFrom,airTo,iArgument.equals("Roundtrip"));
return true;
 }
 return super.action(iEvent,iArgument); // event was handled
 }
 private void searchFlights(String departingFrom,String arrivingTo,boolean
roundTrip)
 {
 try
 {
 // System.out.println("Airplet.searchFlights - from " +
departingFrom + "
 to " + arrivingTo);
 Airport airFrom = Airport.getAirport(departingFrom); // find out more
 about departing airport
 Airport airTo = Airport.getAirport(arrivingTo); // find out more
about
 arriving airport
 if(airFrom != null && airTo != null) // if both airports where found
(and
 they are different)
 {
 nameFrom.setText(airFrom.getName()); // show complete name
 and code for departure airport
 choiceFrom.select(airFrom.getCode());
 nameTo.setText(airTo.getName()); // show complete name and
 code for arrival airport
 choiceTo.select(airTo.getCode());
 if(roundTrip) // if user requested return trip
 {
 panelFlights.setAirports(airTo,airFrom); // show
 inverse route
 }
 else panelFlights.setAirports(airFrom, airTo); // show
 normal route
 layout();
 }
 }
 catch(SQLException sqlEx) { panelFlights.setText(sqlEx.toString());

 }
 }
 static Statement createStatement() throws SQLException
 {
 return connection.createStatement();
 }
 private static Connection connection = null; // connection to the airline
database
 /** Loads given image from the network, or file system, and returns it. */
 static Image loadImage(String iName)
 {
 if(images == null) // if there's no hash table for images yet
 {
 images = new Hashtable(); // create an empty hash table
 }
 Image image = (Image) images.get(iName); // try to get image from the
hash table
 (hash is image's name)
 if(image == null) // if this image hasn't been loaded yet
 {
 try // catch all loading problems
 {
 URL url = new URL(airplet.getDocumentBase(), iName); //
 create url of image on web server or local file system
 image = airplet.getImage(url); // try to load image
 airplet.prepareImage(image,airplet);
 }
 catch(Exception e) { }
 if(image != null) // if image was loaded
 {
 images.put(iName,image); // add it to the hash table so next
 time we don't have to load it
 }
 }
 return image; // return the image
 }
 static private Hashtable images = null; // an hash table of loaded images
 static private Airplet airplet = null; // a static reference to this applet
(there's only one
 instance of it running at any time)
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Airport.java

Airport.java holds the information regarding an airport. The constructor executes a query returning airport details such as
its code, its name, its description, and its geographical coordinates in terms of x and y positions on different maps.

A hash table of airports is also created in Listing 10-5, which shows the source code of Airport.java.

Listing 10-5: Airport.java.

//
// Airport.java - this objects holds information regarding an airport
//
// Copyright (C) 1996 by Connect Software. All rights reserved.
//
// Written by Gionata Mettifogo, Peter Ham.
//
package airplet;
import connect.sql.*; // import sql server access classes
import java.awt.*; // java's windowing toolkit and other ui classes
import java.util.*; // utility classes
/** Information regarding an airport. */
class Airport
{
 public Airport(String iAirport) throws SQLException
 {
 iAirport = iAirport.trim(); // remove leading and trailing spaces
 ResultSet r = null; Statement s = Airplet.createStatement(); // use normal
statement
 to query the Airports table
 if(iAirport.length() == 3) // if this is likely to be an airport code
 {
 r = s.executeQuery("select * from airports where code = '" + iAirport
+
 "'");
 if(r.next() == false) // move over to the first (and only) row in the
result
 set
 {
 r = null; // there are no entries with given airport code
 }
 }
 if(r == null) // search for airports whose name contain given airport string
(like
 %string%)
 {

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

 r = s.executeQuery("select * from airports where name like '%" + iAirport
 + "%'");
 if(r.next() == false) // move to first (and probably only) row in result
set
 {
 String nocase = ""; // case insensitive name, eg.
 [mM][iI][lL][aA][nN] instead of Milan
 for(int i = 0 ; i < iAirport.length() ; i++) // scan all
characters in
 the string
 {
 String single = iAirport.substring(i,i+1); // extract
 character then convert to lowercase and uppercase
 String lower = single.toLowerCase(), upper =
 single.toUpperCase();
 if(lower.equals(upper) == false) // if lowercase is
 different from uppercase (that is if this character is
 alpha)
 {
 nocase += "[" + lower + upper + "]"; //
 regular expression for both lower or
 uppercase, e.g. [aA]

 }
 else nocase += single;
 }
 // System.out.println("Airport - searching with case insensitive
 string '" + nocase + "'");
 r = s.executeQuery("select * from airports where name like '%" +
 nocase + "%'");
 if(r.next() == false) r = null; // if this one didn't work
either there's no such airport
 }
 }
 if(r != null)
 {
 code = r.getString("code"); // airport code, eg. 'SFO'
 name = r.getString("name"); // airport name, eg. 'San Francisco, CA'
 description = r.getString("description"); // description of this airport
 StringTokenizer sTokenizer = new StringTokenizer
 (r.getString("maps"),";");
 while(sTokenizer.hasMoreTokens()) // scan each token, maps entry looks
 something like "california(45,60);usa(123,3);world(56,78)"
 {
 MapInfo info = new MapInfo(sTokenizer.nextToken()); // create
 an object containing information regarding this airport on a
 single map
 if(maps != null) // if there's other maps already
 {
 maps.append(info); // add this map to the linked list
 of maps
 }
 else maps = info; // this is the first map in the list
 // System.out.println(code + " map " + info);
 }
 }
 else throw new SQLException("Can't find '" + iAirport + "' in the airports
 database.");
 }

 private String code, name, description; // airport code, name and description,
eg. 'SFO',
 'San Francisco, CA', 'International Airport, ...'
 private MapInfo maps; // linked list of maps available for this airport (and
coordinates on
 each map) in preferred order (eg. 'california', 'usa', 'world')
 public String getCode()
 {
 return code; // return airport code
 }
 public String getName()
 {
 return name;
 }
 public MapInfo getMaps()
 {
 return maps;
 }
 /** Returns airport with the given name or code. */
 static public Airport getAirport(String iName)
 {
 try
 {
 if(airports = null) // if there's no hash table for
airports
 {
 airports = new Hashtable(); // create an
 empty hash table
 }
 Airport airport = (Airport) airports.get(iName); // try
getting
 the airport from the hash table
 if(airport = null) // if airport was not found
 {
 airport = new Airport(iName); // create a new airport
 from that name (will query the database)
 airports.put(airport.getName(),airport); // add airport
 , to the hash table (by name)
 airports.put(airport.getCode(),airport); // add also by
 code
 }
 return airport; // return the airport
 }
 catch(SQLException sqlException) { return null; } // airport
could not be
 found
 }
 static private Hashtable airports = null; // hash table of airports
(used to minimize
 database access)
 public String toString()
 {
 return "Airport[" + code + "," + name + "]"; // convert object to string
 }
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

AirportChoice. java

AirportChoice.java class queries the database to build a list of airport codes such as SFO, LAX, or JFK. The list is used
within the user interface to let the user choose the departure and arrival airports. Listing 10-6 shows the source code for
AirPortChoice.java.

Listing 10-6: AirportChoice.java.

//
// AirportChoice.java - user interface widget showing a choice of airports
//
// Copyright (C) 1996 by Connect Software. All rights reserved.
//
// Written by Gionata Mettifogo, Peter Ham.
//
package airplet;
import connect.sql.*; // import jdbc and other sql libraries
import java.awt.*; // java windowing toolkit
/** A choice user interface widget showing a list of available airport codes. */
class AirportChoice extends Choice
{
 /**
 * Initialize the choice user interface widget with a list of airports
 * available in the database. The method will query the airports table
 * of the database, listing all available airports by code.
 */
 public AirportChoice() throws SQLException
 {
 // use sql to select all airport codes from the airports table then add
them to the
 widget
 Statement s = Airplet.createStatement(); // scan all the airports in the
table
 for(ResultSet r = s.executeQuery("select code from airports order by
code") ; r.next()
 ;)
 {
 String name = r.getString(1); // name of this airport
 // System.out.println("AirportChoice - " + r.getString("code") + " is
'" +
 name + "'");
 addItem(name); // add airport to the choices
 }
 s.close(); // close statement
 }
 /** Returns the Airport corresponding to the entry with the given index. */

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

 public Airport getAirport(int index)
 {
 return Airport.getAirport(getItem(index)); // return Airport object
 }
 /** Returns the currently selected Airport. */
 public Airport getSelectedAirport()
 {
 return getAirport(getSelectedIndex());
 }
}

ColumnLayout. java

ColumnLayout.java class arranges a set of components in a single column. The source code for this class is in Listing 10-
7.

Listing 10-7: ColumnLayout.java.

//
// ColumnLayout.java - layout that arranges all components in a column
//
// Copyright (C) 1996 by Connect Software. All rights reserved.
//
// Written by Gionata Mettifogo.
//
package airplet;
import java.awt.*; // import java windowing classes
/** A layout that arranges all components in a single column. */
public class ColumnLayout implements LayoutManager // just another layout manager
{
 public ColumnLayout()
 {
 hgap = vgap = 0; // no gap between components
 }
 public ColumnLayout(int hgap,int vgap)
 {
 this.hgap = hgap; this.vgap = vgap; // use this spacing between components
 }
 private int hgap, vgap; // horizontal and vertical spacing between components
 /** Arrange components contained in iParent in a single column using their
preferred size.
 */
 public void layoutContainer(Container iParent)
 {
 Insets insets = iParent.insets(); // insets (borders around the container)
 Dimension dimension = iParent.size(); // size of parent container
 dimension.width -= insets.left + insets.right; // net width of container
 for(int i = 0, v = vgap ; i < iParent.countComponents() ; i++)
 {
 Component component = iParent.getComponent(i); // scan each
 component in the container
 Dimension size = component.preferredSize(); // get component's
 preferred size the reshape it
 component.reshape(insets.left,v,dimension.width - insets.left -
 insets.right,size.height);
 component.repaint(); // redraw the component
 v += size.height + vgap; // update vertical origin for next component

 }
 }
 /** Returns the minimum layout size calculated using each component's
preferred size. */
 public Dimension minimumLayoutSize(Container iParent)
 {
 Dimension dimension = new Dimension(0,0);
 for(int i = 0 ; i < iParent.countComponents() ; i++) // scan components
 {
 Component component = iParent.getComponent(i);
 Dimension size = component.preferredSize(); // get i-th component's size
 dimension.width = Math.max(dimension.width,size.width);
 dimension.height += size.height + vgap; // update height including this
 component
 }
 Insets insets = iParent.insets(); // add insets (border)
 dimension.width += insets.left + insets.right + 2 * hgap;
 dimension.height += insets.top + insets.bottom + vgap;
 return dimension;
 }
 /** Preferred size is just like minimum size but can be as wide as the parent
component. */
 public Dimension preferredLayoutSize(Container iParent)
 {
 Dimension dimension = minimumLayoutSize(iParent);
 dimension.width = Math.max(iParent.size().width,dimension. width);
 return dimension;
 }
 public void addLayoutComponent(String iName,Component iComponent)
 {
 }
 public void removeLayoutComponent(Component iComponent)
 {
 }
}

Flight.java

Flight.java contains a constructor that initializes the members of the flight information and passes them as a parameter. It
extracts the flight number, departure and arrival, flight frequency, and plane identification. Listing 10-8 shows the source
code for this class.

Listing 10-8: Flight.java.

//
// Flight.java - holds information regarding a flight
//
// Copyright (C) 1996 by Connect Software. All rights reserved.
//
// Written by Gionata Mettifogo, Peter Ham.
//
package airplet;
import connect.sql.*; // import jdbc and other sql libraries
class Flight
{
 /**
 * Initialize flight from the information contained in the current

 * row of this result set. The result set is a subset of rows from
 * the flights table in the airline database. This method will read
 * information on current row (it will not call next).
 *
 * @param iFlight is a result set whose current row is a flight
 */
 public Flight(ResultSet iFlight) throws SQLException
 {
 code = iFlight.getString("code"); // get flight number
 from = iFlight.getString("from_city"); to = iFlight.getString("to_city");
 departure = iFlight.getTime("departure"); arrival = iFlight.getTime
("arrival");
 frequency = iFlight.getString("frequency"); // flight frequency (eg. which
days this
 flight operates)
 plane = iFlight.getString("plane"); // airplane used
 }
 String code, from, to; // the flight code/number and city of departure/
arrival, e.g.,
 'TWA800'
 Time departure, arrival; // departure and arrival time
 String frequency; // days when the flight is available, e.g., 123 for Mon,
Tue, Wed
 String plane; // airplane used, e.g., "Boeing 767"
 public String toString()
 {
 return "Flight[" + code + "," + from + " " + departure + "," + to + " " +
arrival + ","
 + frequency + "," + plane + "]";
 }
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

FlightsPanel.java

FlightsPanel.java class is a panel containing a graphical map. Which map is displayed depends on the departure and
destination airport locations. This panel also displays the routes. Listing 10-9 contains the source code for this class.

Listing 10-9: FlightsPanel.java.

//
// FlightsPanel.java - a panel showing flights information and routes.
//
// Copyright (C) 1996 by Connect Software. All rights reserved.
//
// Written by Gionata Mettifogo, Peter Ham.
//
package airplet; // airplet package
import connect.sql.*; // import connect's jdbc libraries
import java.awt.*; // import java windowing library
class FlightsPanel extends Panel
{
 public FlightsPanel()
 {
 LayoutManager layout = new ColumnLayout(0,10); // column layout with 10
 pixels between components
 setLayout(layout); // use this layout for the panel
 map = new MapCanvas(); add(map); // add a map to the panel
 label = new MultilineLabel(Label.CENTER); // label that can display
multiple lines
 of text (draw with subtle good looking shadow)
 setText("Welcome to jdbc airlines!\n \nPlease pick an origin and a
 destination\nthen click Search or RoundTrip.");
 add(label); // add label to panel
 }
 /** Converts a time object into a string in the form hh:mm am/pm */
 String time2string(Time time)
 {
 int hour = time.getHours(); // get hours (0..23) and minutes (0..59)
 int minute = time.getMinutes(); // format the string as hh:mm then append
am or
 pm
 return (hour % 12 < 10 ? "0" : "") + Integer.toString(hour % 12) + ":" +
(minute < 10
 ? "0" : "") + Integer.toString(minute) + (hour < 12 ? " AM" : " PM");
 }
 void setAirports(Airport iFrom,Airport iTo) throws SQLException
 {
 String str = null;

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

 try
 {
 map.setAirports(iFrom,iTo); // show best map for these two airports
(and
 a route between them)
 if(iFrom.getCode().equals(iTo.getCode()) = false) // if the two
airports are
 not the same
 {
 FlightsVector flights = new FlightsVector(iFrom,iTo); // create a
 vector containing all the flights between the two airports
 int numFlights = flights.size(); // number of flights found
 if(numFlights > 0) // if there are flights
 {
 str = "Flights from " + iFrom.getName() + " to " +
 iTo.getName() + "\n \n";
 for(int i = 0 ; i < numFlights ; i++) // scan flights
 between these two airports
 {
 Flight flight = (Flight) flights.elementAt(i); //
 retrieve i-th flight
 str += flight.code + " leaves at " +
 time2string(flight.departure) + " arrives at "
 + time2string(flight.arrival) + " (frequency "
 + flight.frequency + ").\n";
 }
 }
 else str = "There are no flights between " + iFrom.getName() + "
 and " + iTo.getName() + ".";
 }
 else str = "Please pick two different airports, then retry."; // if
there are no
 flights or airports are the same show an error message
 }
 catch(SQLException sqlEx) // some sql exception was raised, notify the user
 {
 str = "Sorry, your request didn't go through,\nthe server is probably
 down or busy,\nplease try again later.\n \n" + sqlEx;
 }
 setText(str); // show the string with the flights or the warning
 layout(); // we may need to redo this panel's layout (the label may have
changed its
 size)
 }
 public void setText(String text)
 {
 label.setText(text);
 }
 private MapCanvas map = null; // map and route canvas
 private MultilineLabel label = null; // label with flights or error message
}

FlightsVector.java

FlightsVector.java is a vector containing all flights between the departure and arrival airports. A query is sent to the
database server to get information about flights with the given airport codes for departure and arrival. Listing 10-10
shows the source code for this class.

Listing 10-10: FlightsVector.java.

//
// FlightsVector.java - a vector containing a bunch of flights
//
// Copyright (C) 1996 by Connect Software. All rights reserved.
//
// Written by Gionata Mettifogo, Peter Ham.
//
package airplet;
import connect.sql.*; // import jdbc and other sql libraries
import java.util.*; // java utility classes
class FlightsVector extends Vector // this is just a vector of Flight objects
{
 /**
 * Initialize this vector with all flights between two given airports.
 * The method will select all rows in the flights table having the given
airport
 * codes in the from_city and to_city fields. An entry in the vector will
then
 * be created for each flight and each entry will be added to the vector.
 *
 * @param iConnection connection to the database
 * @param iFrom the airport we're leaving from
 * @param iTo the airport we're arriving to
 */
 public FlightsVector(Airport iFrom,Airport iTo) throws SQLException
 {
 // executes something like: select * from flights where from_city
 = 'SFO' and to_city = 'JFK'
 String sql = "select * from flights where from_city = '" + iFrom.getCode()
+ "' and
 to_city = '" + iTo.getCode() + "' order by departure";
 Statement s = Airplet.createStatement(); // create normal sql statement
 for(ResultSet r = s.executeQuery(sql) ; r.next() ;) // scan all flights
between given
 airports
 {
 Flight flight = new Flight(r); // create a new flight from current row
 // System.out.println("FlightsVector - adding flight " + flight + " to
 vector");
 addElement(flight); // add this flight to the vector
 }
 s.close(); // we don't have to do this (but it could help jdbc optimize
access)
 }
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

ImageCanvas.java

ImageCanvas.java class is a canvas containing an image. An update method is provided to draw the image using double
buffering, if possible. Listing 10-11 shows the source code for this class.

Listing 10-11: ImageCanvas.java.

//
// ImageCanvas.java - a canvas that shows an image
//
// Copyright (C) 1996 by Connect Software. All rights reserved.
//
// Written by Gionata Mettifogo, Peter Ham.
//
package airplet;
import java.applet.*;
import java.awt.*; // java windowing classes
/** A canvas used to display an image. */
public class ImageCanvas extends Canvas // shows a canvas containing an image
{
/** Initialize canvas showing the image with the given name. */
public ImageCanvas(String name)
{
 if(name != null && name.length() > 0) // if a name was specified
 {
 setImage(name); // load image
 }
}
protected Image image = null; // image shown by this canvas
/** Display image with given name in the canvas. */
public void setImage(String iName)
{
 Image newimage = Airplet.loadImage(iName); // load new image
 if(image != newimage) // if image changed
 {
 image = newimage; repaint(); // refresh the canvas
 }
}
/** Update the canvas using double buffering (if enough memory's available). */
synchronized public void update(Graphics iGraphics)
{
 Dimension d = size();
 if(d.width < 1 || d.height < 1) return; // don't update if empty
 Image buf = null;
 try // catch memory full and other problem
 {

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

 buf = createImage(d.width,d.height); // create temporary buffer
 }
 catch(Exception e) { }
 if(buf != null) // if buffer was created
 {
 Graphics bufGr = buf.getGraphics(); // get buffer's graPHIC CONTEXT
 bufGr.clearRect(0,0,d.width,d.height); // erase content of buffer
 paint(bufGr); // paint into the offscreen buffer
 iGraphics.drawImage(buf,0,0,this); // copy the offscreen buffer to the
 panel
 buf.flush(); // dispose buffer's resources
 }
 else super.update(iGraphics); // if there's not enough memory for double
buffering
 let the superclass update as usual
 }
 /** Draw the image centered in the canvas. */
 public void paint(Graphics iGraphics)
 {
 if(image != null) // if there is an image
 {
 Dimension d = size(); // calculate image's origin
 d.width -= image.getWidth(this);
 d.height -= image.getHeight(this); // then draw the image centered in
the
 canvas
 iGraphics.drawImage(image,d.width,d.height,this);
 }
 }
 /** Preferred size for this canvas is the size of the image that it is
showing, if any. */
 public Dimension preferredSize()
 {
 if(image != null) // if an image was selected return its size
 {
 return new Dimension(image.getWidth(this),image. getHeight(this));
 }
 return new Dimension(1,1); // otherwise 1 pixel will do (0 would be too
little,
 'cause paint would never be called)
 }
}

MapCanvas.java

MapCanvas.java contains the methods used to display the most appropriate map for the departure and arrival selections.
A route is drawn between the two airports. Listing 10-12 shows the source code for this class.

Listing 10-12: MapCanvas.java.

//
// MapCanvas.java - a view that shows a map with airports and a route
//
// Copyright (C) 1996 by Connect Software. All rights reserved.
//
// Written by Gionata Mettifogo, Peter Ham.
//

package airplet;
import java.awt.*; // import java windowing toolkit
import java.io.*; // I/O streams, exceptions, etc.
import java.applet.*; // applet class
/** A canvas that shows a map and a flight's route. */
class MapCanvas extends ImageCanvas // map class extends canvas (drawable view)
{
 public MapCanvas()
 {
 super("images/world.gif"); // display world map until airports are selected
 iconFrom = Airplet.loadImage("images/iconFrom.gif"); // load origin and
 destination icons
 iconTo = Airplet.loadImage("images/iconTo.gif");
 }
 private Airport airFrom = null; // arrival and departure airports
 private Airport airTo = null;
 private MapInfo mapFrom = null; // information regarding the airports on the
map
 private MapInfo mapTo = null;
 private Image iconFrom = null; // icons for arrival and departure points on
the map
 private Image iconTo = null;
 /** Draw a route going from x1,y1 to x2,y2 */
 private void drawRoute(Graphics iGraphics,int x1,int y1,int x2,int y2)
 {
 int xp = x1;
 int yp = y1;
 double arc = Math.min(Math.abs(x1 - x2) * .20 + Math.abs(y1 - y2)
* .20,30.0);
 for(double p = .1 ; p <= 1.0 ; p += .1) // draw a slanted arc as 20
connected lines
 {
 int xc = (int) (x1 + (double) (x2 - x1) * p); // calculate parametric
position
 in the line connecting origin with arrival
 int yc = (int) (y1 + (double) (y2 - y1) * p);
 double pslanted = p; // (p < .75) ? (p * .50 / .75) : (.50 + (p
- .75) * .50 / .25);
 yc -= (int) (Math.sin(Math.PI * pslanted) * arc); // add variable y
value to
 form an arc
 iGraphics.drawLine(xp,yp,xc,yc); // draw current segment
 xp = xc; // current position becomes previous position
 yp = yc;
 }
 }
 /** Draw the map of the region containing both airports and a route. */
 public void paint(Graphics iGraphics)
 {
 super.paint(iGraphics); // draws the map
 if(mapFrom != null && mapTo != null)
 {
 Dimension d = size(); // size of this canvas
 int w = image.getWidth(this), hofs = (d.width - w) / 2; // origin of
the
 map in the canvas
 int h = image.getHeight(this), vofs = (d.height - h) / 2;
 iGraphics.setColor(Color.lightGray);

 drawRoute(iGraphics,hofs + mapFrom.x + 1,vofs + mapFrom.y + 1,hofs +
 mapTo.x + 1,vofs + mapTo.y + 1);
 iGraphics.setColor(Color.black);
 drawRoute(iGraphics,hofs + mapFrom.x,vofs + mapFrom.y,hofs + mapTo.x,
vofs + mapTo.y);
 int xFrom = hofs + mapFrom.x - iconFrom.getWidth(this) / 2;
 int yFrom = vofs + mapFrom.y - iconFrom.getHeight(this) / 2;
 int xTo = hofs + mapTo.x - iconTo.getWidth(this) / 2; // calculate
origin
 and destination icon's position
 int yTo = vofs + mapTo.y - iconTo.getHeight(this) / 2;
 iGraphics.drawImage(iconFrom,xFrom,yFrom,this); // draw origin and
 destination icons
 iGraphics.drawImage(iconTo,xTo,yTo,this);
 }
 }
 /** Sets departure and arrival airports, selecting and displaying the most
appropriate map.
 */
 void setAirports(Airport iFrom,Airport iTo)
 {
 String name = null;
 airFrom = iFrom; airTo = iTo; // set departure and arrival airports
 if(airFrom != null && airTo != null) // if departure and arrival airports
were
 specified
 {
 for(mapFrom = airFrom.getMaps() ; name == null && mapFrom != null ;)
 {
 for(mapTo = airTo.getMaps() ; name == null && mapTo != null ;)
 {
 if(mapFrom.name.equals(mapTo.name))
 {
 name = mapFrom.name;
 }
 else mapTo = mapTo.next;
 }
 if(name == null) mapFrom = mapFrom.next;
 }
 // System.out.println("MapCanvas.setAirport - " + airFrom + " " +
 mapFrom + " to " + airTo + " " + mapTo);
 }
 name = "images/" + (name != null ? name : "world") + ".gif"; // use
world's map if
 there's no better one
 setImage(name); // display new image
 }
 public Dimension preferredSize()
 {
 return new Dimension(500,300); // size of the maps is fixed
 }
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

MapInfo.java

MapInfo.java class extracts the x,y coordinates from the flight’s string for a particular graphic map. Listing 10-13 shows
its source code.

Listing 10-13: MapInfo.java.

//
// MapInfo.java - informations regarding airport's position on a map
//
// Copyright (C) 1996 by Connect Software. All rights reserved.
//
// Written by Gionata Mettifogo, Peter Ham.
//
package airplet; // airplet's package
import java.util.*; // utility classes
/** Information about an airport's position on a map. */
class MapInfo
{
 /** Initialize from a 'map(x,y)' string. */
 MapInfo(String map)
 {
 StringTokenizer sTokenizer = new StringTokenizer(map,"(,)"); // name is
encoded
 as name(x,y) so use (and comma as separators
 name = sTokenizer.nextToken().toLowerCase(); // name of this map (eg.
'usa',
 'europe', 'world')
 x = Integer.parseInt(sTokenizer.nextToken()); // coordinate of the airport
in this
 map
 y = Integer.parseInt(sTokenizer.nextToken());
 }
 String name; // name of the map
 int x,y; // coordinates of the airport on this map
 MapInfo next = null; // next map (this is a linked list)
 void append(MapInfo item)
 {
 if(next != null) next.append(item); else next = item; // appends item at
the end of
 the linked list
 }
 public String toString()
 {
 return "MapInfo[" + name + "," + x + "," + y + "]"; // returns MapInfo
[name,x,y]

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

 }
}

MultilineLabel.java

MultilineLabel.java is simply a label that can display multiple lines of text. It also provides text shadow for the drawn
string. Listing 10-14 shows the source code for this class.

Listing 10-14: MultilineLabel.java.

//
// MultilineLabel.java - a label that can draw several lines of text
//
// Copyright (C) 1996 by Connect Software. All rights reserved.
//
// Written by Gionata Mettifogo, Peter Ham.
//
package airplet;
import java.awt.*;
import java.util.*;
public class MultilineLabel extends java.awt.Canvas
{
 public MultilineLabel(int alignment)
 {
 align = alignment;
 }
 private String text; private int align; // text and alignment (see constants
in Label)
 public void setText(String text)
 {
 this.text = text;
 }
 /** Draw the multiline label aligned as specified during object's
construction. */
 public void paint(Graphics iGraphics)
 {
 FontMetrics fm = iGraphics.getFontMetrics(); // get information on the
font's sizes
 StringTokenizer tokens = new StringTokenizer(text,"\n"); // separate
different lines
 int w = size().width, h = fm.getHeight(); // line height and label's width
 for(int y = h ; tokens.hasMoreTokens() ; y += h) // scan all lines in the
label
 {
 String line = tokens.nextToken(); // retrieve line
 int x = 0;
 if(align == Label.CENTER || align == Label.RIGHT) // if line is
centered
 or right aligned
 {
 x = w - fm.stringWidth(line); if(align == Label.CENTER) x /=
2;
 // calculate spacing on left side
 }
 shadowString(iGraphics,line,x,y); // draw the line
 }
 }

 public Dimension preferredSize()
 {
 FontMetrics fm = getGraphics().getFontMetrics(); // get information on the
font's
 sizes
 StringTokenizer tokens = new StringTokenizer(text,"\n"); // separate
different lines
 Dimension dimension = new Dimension(0,fm.getHeight() * tokens.countTokens
() +
 fm.getMaxDescent() + 1);
 while(tokens.hasMoreTokens()) // scan lines
 {
 String line = tokens.nextToken(); // retrieve line
 dimension.width = Math.max(fm.stringWidth(line),dimension.width); //
 width is the length of the longest line
 }
 return dimension;
 }
 /**
 * Draws the given string at the given position using a
 * subtle 1 pixel gray shadow. Light comes from the upper
 * left corner (where the Apple used to be).
 */
 public void shadowString(Graphics iGraphics,String iString,int x,int y)
 {
 Color color = iGraphics.getColor();
 iGraphics.setColor(Color.lightGray);
 iGraphics.drawString(iString,x+1,y+1);
 iGraphics.setColor(color);
 iGraphics.drawString(iString,x,y);
 }
}

Handling Multimedia Content

SQL does not provide mechanisms that are powerful enough to handle binary large objects, known as BLOBs.
Fortunately, JDBC contains the necessary methods to insert and extract BLOBs.

Sending BLOBS

The next example is a simple command line tool used to insert binary large objects in a table. Any kind of BLOB may be
used, including pictures, audio files, binary data, and texts. It is quite simple to use. The tool prompts you for a database
URL, a log in, a password, the name of the table to be updated, the BLOB column name, which is the column that holds
a BLOB, and the BLOB file name.

A row must exist in the table before trying to insert a BLOB. For example, a table of employees must contain a row for
Jones before a picture can be inserted for this employee. To locate this row, the program also prompts for a column name
and value, which represent a search criteria. In the case of employee Jones, simply use “name” as column name and
“Jones” as column value.

All parameters but the database URL, log in, and password may be passed on the command line. In this case, the
program will use the default URL, log in, and password. This method is extremely convenient for inserting multiple
BLOBs at once from a shell script.

Batch Command

Consider this script.

java txblob -c employees pict name Jones /tmp/pictures/jones.jpg
java txblob -c employees pict name Dupont /tmp/pictures/dupont.jpg
java txblob -c employees pict name Duke /tmp/pictures/duke.jpg
java txblob -c employees pict name Jack /tmp/pictures/jack.jpg
...
...

It inserts the pictures of Jones, Dupont, Duke, and Jack in the table of employees.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Source

Listing 10-15 contains the source code for this example.

Listing 10-15: txblob.java.

import java.sql.*;
import java.io.*;
import java.util.*;
 public class txblob {
 static DataInputStream kbd = new DataInputStream(System.in);
 static String url = "jdbc:odbc:netbank";
 static String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
 static String login = "dba";
 static String passwd = "javabank";
 static String filename = "";
 static String tablename = "";
 static String blobcolumnname = "";
 static String selectcolumnname = "";
 static String selectcolumnvalue = "";
 static Connection curConn = null;
 public static void main(String argv[]) throws IOException
 {
 String temp = "";
 if (argv[0].equals("-c")) {
 tablename = argv[1];
 blobcolumnname = argv[2];
 selectcolumnname = argv[3];
 selectcolumnvalue = argv[4];
 filename = argv[5];
 } else {
 System.out.println("Simple tool to insert BLOBS, by Bernard Van
Haecke,
 1996.\n");
 System.out.print("Enter the url or [ENTER] for " + url + " : ");
 System.out.flush();
 temp = kbd.readLine();
 if (!temp.equals("")) url = temp;
 System.out.print("Enter the login or [ENTER] for " + login + " : ");
 System.out.flush();
 temp = kbd.readLine();
 if (!temp.equals("")) login = temp;
 System.out.print("Enter the passwd or [ENTER] for " + passwd + " :
");
 System.out.flush();
 temp = kbd.readLine();

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

 if (!temp.equals("")) passwd = temp;
 System.out.print("\nEnter the table name : ");
 System.out.flush();
 tablename = kbd.readLine();
 System.out.print("Enter the blob column name : ");
 System.out.flush();
 blobcolumnname = kbd.readLine();
 System.out.print("Enter the row selection criteria column name : ");
 System.out.flush();
 selectcolumnname = kbd.readLine();
 System.out.print("Enter the row selection criteria value : ");
 System.out.flush();
 selectcolumnvalue = kbd.readLine();
 System.out.print("Enter the file name : ");
 System.out.flush();
 filename = kbd.readLine();
 }
 txblob session = new txblob();
 }
 public txblob() throws IOException
 {
 try {
 Class.forName(driver);
 curConn = DriverManager.getConnection(url, login, passwd);
 }
 catch(java.lang.Exception ex) {
 System.out.println("url : " + url);
 System.out.println("login : " + login);
 System.out.println("passwd : " + passwd);
 ex.printStackTrace();
 return;
 }
 processBlob();
 finalize();
 }
 protected void finalize()
 {
 try {
 curConn.close();
 }
 catch (SQLException ex) { }
 }
 private void processBlob() throws IOException
 {
 try {
 java.io.File blobFile = new java.io.File(filename);
 int blobFileLen = (int) blobFile.length();
 java.io.InputStream fblob = new java.io.FileInputStream(blobFile);
 PreparedStatement myStmt = curConn.prepareStatement(
 "UPDATE " + tablename + " SET " + blobcolumnname + " = ? WHERE "
 + selectcolumnname + " = ?");
 myStmt.setBinaryStream(1, fblob, blobFileLen);
 myStmt.setString(2, selectcolumnvalue);
 int res = myStmt.executeUpdate();
 myStmt.close();
 }
 catch (SQLException ex) {
 // Unexpected SQL exception.
 System.out.println(ex);

 }
 catch (java.lang.Exception ex) {
 // Got some other type of exception. Dump it.
 ex.printStackTrace ();
 }
 }
}

Retrieving BLOBS

This example is very similar to the previous one. It is a simple command line tool to retrieve binary large objects from a
table. It prompts for a database URL, a log in, a password, the name of the table to be updated, the BLOB column name,
which is the column that holds a BLOB, and the BLOB file name where this BLOB must be stored.

If a table of employees contains a row for Jones and if a picture is available for this employee, it is possible to retrieve it.
To locate this row, the program prompts for a column name and value, which represent a search criteria. In the case of
employee Jones, we would simply use “name” as column name and “Jones” as column value.

All parameters but the database URL, log in, and password pass on the command line. In this case, the program uses the
default URL, log in, and password. This is extremely convenient for retrieving many BLOBs at once from a shell script.

Batch Command

Consider the script in Listing 10-16.

Listing 10-16: Batch command.

java rxblob -c employees pict name Jones /tmp/pictures/jones.jpg
java rxblob -c employees pict name Dupont /tmp/pictures/dupont.jpg
java rxblob -c employees pict name Duke /tmp/pictures/duke.jpg
java rxblob -c employees pict name Jack /tmp/pictures/jack.jpg
...
...

This batch command retrieves the pictures of Jones, Dupont, Duke, and Jack from the table of employees and stores
these pictures in different files. The file name and file type are not stored in the table. We could have stored the file type
in the table by simply adding a file type record. In case the client application is not aware of the BLOB format, it is
mandatory to store this type information somewhere. It is possible to do so, but, in this case, special fields must be added
to the table structure because it is considered extra information regarding BLOBs. Indeed, BLOBs are nothing more than
untyped binary data.

It may be a good idea to hold the data type along with BLOBs, particularly when the information is to be extracted and
sent to a Web browser. In this case, it is appropriate to store the BLOB’s Multimedia Internet Mail Extension (MIME)
type in a specific field of the table so the browser knows how to interpret the data [e.g., should it display it as a JPEG
(Joint Photographic Experts Group) picture or MPEG (Motion Pictures Experts Group) movie file, or play it as an .au
(common audio file on Unix machines) sound file].

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Source

Listing 10-17 contains the source code for this example.

Listing 10-17: rxblob.java.

import java.sql.*;
import java.io.*;
import java.util.*;
public class rxblob {
 static DataInputStream kbd = new DataInputStream(System.in);
 static String url = "jdbc:odbc:netbank";
 static String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
 static String login = "dba";
 static String passwd = "javabank";
 static String filename = "";
 static String tablename = "";
 static String blobcolumnname = "";
 static String selectcolumnname = "";
 static String selectcolumnvalue = "";
 static Connection curConn = null;
 public static void main(String argv[]) throws IOException
 {
 String temp = "";
 if ((argv[0] != null) && (argv[0].equals("-c")))
 {
 tablename = argv[1];
 blobcolumnname = argv[2];
 selectcolumnname = argv[3];
 selectcolumnvalue = argv[4];
 filename = argv[5];
 } else {
 System.out.println("Simple tool to retrieve BLOBS, by Bernard Van
 Haecke, 1996.\n");
 System.out.print("Enter the url or [ENTER] for " + url + " : ");
 System.out.flush();
 temp = kbd.readLine();
 if (!temp.equals("")) url = temp;
 System.out.print("Enter the login or [ENTER] for " + login + " : ");
 System.out.flush();
 temp = kbd.readLine();
 if (!temp.equals("")) login = temp;
 System.out.print("Enter the passwd or [ENTER] for " + passwd + " : ");
 System.out.flush();
 temp = kbd.readLine();
 if (!temp.equals("")) passwd = temp;

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

 System.out.print("\nEnter the table name : ");
 System.out.flush();
 tablename = kbd.readLine();
 System.out.print("Enter the blob column name : ");
 System.out.flush();
 blobcolumnname = kbd.readLine();
 System.out.print("Enter the row selection criteria column name : ");
 System.out.flush();
 selectcolumnname = kbd.readLine();
 System.out.print("Enter the row selection criteria value : ");
 System.out.flush();
 selectcolumnvalue = kbd.readLine();
 System.out.print("Enter the file name : ");
 System.out.flush();
 filename = kbd.readLine();
 }
 rxblob session = new rxblob();
 }
 public rxblob() throws IOException
 {
 try {
 Class.forName(driver);
 curConn = DriverManager.getConnection(url, login, passwd);
 }
 catch(java.lang.Exception ex) {
 System.out.println("url : " + url);
 System.out.println("login : " + login);
 System.out.println("passwd : " + passwd);
 ex.printStackTrace();
 return;
 }
 processBlob();
 finalize();
 }
 protected void finalize()
 {
 try {
 curConn.close();
 }
 catch (SQLException ex) { }
 }
 private void processBlob() throws IOException
 {
 try {
 java.io.File blobFile = new java.io.File(filename);
 java.io.OutputStream fblob = new java.io.FileOutputStream
(blobFile);
 java.sql.Statement myStatement = curConn.createStatement();
 ResultSet rs = myStatement.executeQuery("SELECT " +
 blobcolumnnam
 e + " FROM " +
 tablename + "
 WHERE " +
 selectcolumnna
 me + " = " +
 selectcolumnval
 ue);
 // we retrieve in 4K chunks
 byte[] buffer = new byte[4096];

 int size;
 if (rs.next()) {
 // fetch blob
 java.io.InputStream strin =
 rs.getBinaryStream(blobcolumnname);
 for (;;)
 {
 size = strin.read(buffer);
 if (size == 0)
 {
 break;
 }
 // Send the buffer to some output stream
 fblob.write(buffer, 0, size);
 }
 }
 else System.out.println("Row not found.");
 myStatement.close();
 rs.close();
 }
 catch (SQLException ex) {
 // Unexpected SQL exception.
 System.out.println(ex);
 }
 catch (java.lang.Exception ex) {
 // Got some other type of exception. Dump it.
 ex.printStackTrace ();
 }
 }
}

Dealing with Database Transactions

As seen in the section dedicated to database transactions, transactions group the execution of a number of SQL
statements to maintain consistency in multiuser environments. In the following example, we group multiple SQL
INSERT statements to ensure consistent financial transactions by using database transactions.

The Bank of Java

This Java applet is similar to the software provided by banks to their customers to perform operations on their accounts
from their home computers with telephones and modems. It was simplified to illustrate database transactions with JDBC.

The main operations are these:

• Welcome a client and prompt for the client’s ID and PIN code
• Look up the client’s balance and transaction history in the database
• Perform money transfers to other accounts
• For fun, withdraw virtual $20 banknotes

The information about clients and their accounts is, of course, stored in a database. The data structure was kept simple to
allow a quick understanding of the whole application and the transaction mechanism. Database transactions are
performed in the main thread, while a second thread serves as a clock. Each time an update is made to the database, the
SQL queries that perform the update are grouped in a single transaction unit. By doing so, no inconsistent update can
bring the database to an incoherent state.

If the client-server link is broken in the middle of a transaction, the transaction will be canceled; otherwise, it is
committed. Canceling a transaction is called transaction rollback. This mechanism prevents unlogged transfers or
unlogged withdrawals. Indeed, transfers and withdrawals are SQL INSERTs in database tables such as accounts and
history log.

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

The GUI part of this applet was written using Marimba Bongo, which generates a 100-percent portable .gui file. This file
contains a persistent form of the widgets used in this example. The .gui file can be edited using Marimba Bongo, a demo
version of which is on the CD-ROM accompanying this book. The unzipped Marimba classes must be in the
CLASSPATH or present on the WWW server to run this example. The GUI part of the application uses the Marimba
Bongo classes that are persistified to a portable file, which is the main reason why almost no GUI code is present in the
source code. Each GUI control is a Marimba widget, which has a name and various properties that are also persistified in
the permanent GUI file.

Figure 10-5 shows the welcome screen. It prompts for an account number and a PIN code. There is a status bar below the
validate button. If the PIN code is incorrect, this status bar displays an error message.

Figure 10-5: JavaBank applet login screen.

The names of the main controls are:

• welcomeAccountNo—a text field to get the account number
• welcomePinCode—a text field to get the personal identification number
• welcomeOkButton—a button to log into the database
• welcomeEndButton—a button to close the database connection and quit the application
• statusBar—a noneditable text field to display various messages

The values associated with these controls are checked and set within the program; the control names refer to them as
instances of the Marimba GUI widgets.

Once the client has logged in, a lookup is performed in the database, and the customer’s account balance and transaction
history are displayed, as shown in Figure 10-6.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
javascript:displayWindow('images/10-05.jpg',527,592)
javascript:displayWindow('images/10-05.jpg',527,592)

Figure 10-6: JavaBank applet account balance.

These are the controls:

• balanceHistory—a scrollable text list to display the transaction history for the current account
• balanceBalance—a noneditable text field to display the balance of this account
• balanceRefreshButton—a button to refresh the history log
• balanceEndButton—a button to exit the session
• statusBar—a noneditable text field to display various messages

The client’s account balance and transaction history display each time the refresh button is pressed.

The next screen panel allows transfers to other accounts. The name and address of the recipient is looked up in the
database and displayed in the status bar. Then the amount of money is transferred, as shown in Figure 10-7.

Figure 10-7: JavaBank applet transfer screen.

The control names include:

• transferAccountNo—a text field for the recipient’s account number
• transferAmount—a text field for the amount of money to transfer
• transferYesButton—a button to commit the transfer
• transferEndButton—a button to exit the session
• statusBar—a noneditable text field to display various messages

This is the automatic teller machine (ATM) panel. After choosing an amount to withdraw and after pressing the
withdraw button, a Java banknote appears and scrolls on the screen. Figure 10-8 shows this panel.

javascript:displayWindow('images/10-06.jpg',527,592)
javascript:displayWindow('images/10-06.jpg',527,592)
javascript:displayWindow('images/10-07.jpg',527,592)
javascript:displayWindow('images/10-07.jpg',527,592)

Figure 10-8: JavaBank applet cash withdrawal.

The controls include:

• withdrawXX, where XX is one of 20, 100, 200, 1,000—radio buttons used to select the amount of money to
withdraw
• withdrawImage—a picture of a banknote that displays and scrolls when the withdrawal is committed
• withdrawWithdrawButton—a button to commit the withdrawal
• withdrawEndButton—a button to exit the session
• statusBar—a noneditable text field to display various messages

The applet contains two important classes: Account and NetBank. NetBank is the main class, which handles user input,
while Account has specific methods to perform usual bank operations on an account. The most essential part of this
example, the JDBC and SQL code, is in the Account class.

The HTML File

This is the HTML page that calls the applet.

<html>
<title>JavaBank Applet</title>
<head>
<h1>Welcome to JavaBank!</h1>
</head>
<body>
<applet code=NetBank.class width=480 height=380>
</applet>
</body>
</html>

Account.java

Listing 10-18 contains the source code for the Account.java class.

Listing 10-18: Account.java.

import java.sql.*;
import java.io.*;
import java.util.*;
import java.net.*;
public class Account {
 long acctNo = 0;
 Connection curConn;
 public Account(String url, String uid, String pwd) {
 try {

javascript:displayWindow('images/10-08.jpg',527,592)
javascript:displayWindow('images/10-08.jpg',527,592)

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 curConn = DriverManager.getConnection(url, uid, pwd);
 }
 catch(java.lang.Exception ex) {
 ex.printStackTrace();
 }
 }
 protected void finalize()
 {
 try {
 curConn.close();
 } catch (SQLException ex) { }
 }
 public boolean verifyPinCode(long checkAcctNo, String checkPinCode)
 {
 boolean rc = (0 == 1);
 String acctPinCode = "";
 String curQueryString = "SELECT pincode FROM accounts WHERE acctno = " +
 checkAcctNo;
 try {
 Statement curSt = curConn.createStatement();
 curSt.setQueryTimeout(60);
 ResultSet curRs = curSt.executeQuery(curQueryString);
 while (curRs.next()) {
 acctPinCode = curRs.getString("pincode");
 }
 curRs.close();
 curSt.close();
 rc = (checkPinCode.compareTo(acctPinCode) == 0);
 } catch (SQLException ex) { }
 if (rc) {
 acctNo = checkAcctNo;
 }
 return rc;
 }
 public float checkAcctBalance()
 {
 float acctBalance = 0;
 String curQueryString = "SELECT balance FROM accounts WHERE acctno
= " + acctNo;
 try {
 Statement curSt = curConn.createStatement();
 curSt.setQueryTimeout(60);
 ResultSet curRs = curSt.executeQuery(curQueryString);
 while (curRs.next()) {
 acctBalance = curRs.getFloat("balance");
 }
 curRs.close();
 curSt.close();
 } catch (SQLException ex) { }
 return (acctBalance);
 }
 public Vector checkHistory()
 {
 Vector acctTransactionHistory = new Vector();
 String curQueryString = "SELECT tdate, typetransaction, otheracct, amount,
 ipaddress FROM history WHERE acctno = " + acctNo;
 try {
 Statement curSt = curConn.createStatement();

 curSt.setQueryTimeout(60);
 ResultSet curRs = curSt.executeQuery(curQueryString);
 while (curRs.next()) {
 acctTransactionHistory.addElement(curRs.getString(1) + " "
 + curRs.getString(2) + " "
 + curRs.getString(3) + " "
 + curRs.getString(4) + " "
 + curRs.getString(5));
 }
 curRs.close();
 curSt.close();
 } catch (SQLException ex) { }
 return (acctTransactionHistory);
 }
 public Vector checkAcctOwnerName(long checkAcctNo)
 {
 Vector acctOwner = new Vector();
 String curQueryString = "SELECT name, address FROM clients WHERE ownerno
 = (SELECT
 ownerno FROM
 accounts WHERE
 acctno = " +
 checkAcctNo +
 ")";
 try {
 Statement curSt = curConn.createStatement();
 curSt.setQueryTimeout(60);
 ResultSet curRs = curSt.executeQuery(curQueryString);
 while (curRs.next()) {
 acctOwner.addElement(curRs.getString("name"));
 acctOwner.addElement(curRs.getString("address"));
 }
 curRs.close();
 curSt.close();
 } catch (SQLException ex) { }
 return (acctOwner);
 }
 public void makeTransfer(long toAcctNo, float amount)
 {
 String curUpdateString = "UPDATE accounts SET balance = balance + ? WHERE
 acctno = ?";
 String logInsertString = "INSERT INTO history (tdate, acctno,
typetransaction,
 otheracct, amount, ipaddress) VALUES (?, ?, ?, ?, ?, ?)";
 try {
 curConn.setTransactionIsolation(Connection.TRANSACTION_SERIALIZ
 ABLE);
 curConn.setAutoCommit(false);
 PreparedStatement curSt = curConn.prepareStatement
(curUpdateString);
curSt.setQueryTimeout(60);
 curSt.setFloat(1, -amount);
 curSt.setLong(2, acctNo);
 curSt.executeUpdate();
 curSt.setFloat(1, amount);
 curSt.setLong(2, toAcctNo);
 curSt.executeUpdate();
 java.util.Date toDay = new java.util.Date();

 String localHost = "";
 try {
 localHost = InetAddress.getLocalHost().toString();
 }
 catch (UnknownHostException ex) {
 localHost = "localhost/127.0.0.1";
 }
 PreparedStatement logSt = curConn.prepareStatement(logInsertString);
 logSt.setQueryTimeout(60);
 logSt.setString(1, toDay.toGMTString());
 logSt.setLong(2, acctNo);
 logSt.setString(3, "Transfert");
 logSt.setLong(4, toAcctNo);
 logSt.setFloat(5, -amount);
 logSt.setString(6, localHost);
 logSt.executeUpdate();
 logSt.setString(1, toDay.toGMTString());
 logSt.setLong(2, toAcctNo);
 logSt.setString(3, "Received");
 logSt.setLong(4, acctNo);
 logSt.setFloat(5, amount);
 logSt.setString(6, localHost);
 logSt.executeUpdate();
 curConn.commit();
 curConn.setTransactionIsolation(Connection.TRANSACTION_NONE);
 curSt.close();
 logSt.close();
 } catch (SQLException ex) { }
 }
 public void cashWithdraw(float amount)
 {
 String curUpdateString = "UPDATE accounts SET balance = balance + ? WHERE
 acctno = ?";
 String logInsertString = "INSERT INTO history (tdate, acctno,
typetransaction,
 otheracct, amount,
 ipaddress) VALUES
 (?, ?, ?, ?, ?, ?)";
 try {
 curConn.setTransactionIsolation(Connection.TRANSACTION_SERIALIZ
 ABLE);
 curConn.setAutoCommit(false);
 PreparedStatement curSt = curConn.prepareStatement
(curUpdateString);
 curSt.setQueryTimeout(60);
 curSt.setFloat(1, -amount);
 curSt.setLong(2, acctNo);
 curSt.executeUpdate();
 java.util.Date toDay = new java.util.Date();
 String localHost = "";
 try {
 localHost = InetAddress.getLocalHost().toString();
 }
 catch (UnknownHostException ex) {
 localHost = "localhost/127.0.0.1";
 }
 PreparedStatement logSt = curConn.prepareStatement(logInsertString);
 logSt.setQueryTimeout(60);
 logSt.setString(1, toDay.toGMTString());

 logSt.setLong(2, acctNo);
 logSt.setString(3, "Withdraw");
 logSt.setLong(4, 0);
 logSt.setFloat(5, -amount);
 logSt.setString(6, localHost);
 logSt.executeUpdate();
 curConn.commit();
 curConn.setTransactionIsolation(Connection.TRANSACTION_NONE);
 curSt.close();
 logSt.close();
 } catch (SQLException ex) { }
 }
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

NetBank.java

Listing 10-19 contains the source code for NetBank.java.

Listing 10-19: NetBank.java.

 import java.awt.*;
 import java.sql.*;
 import java.lang.*;
 import java.util.*;
 import java.net.*;
 import marimba.gui.*;
 public class NetBank extends java.applet.Applet {
 Presentation presentation;
 PlayerPanel player;
 PlayerUtil util;
 Account curAcct = null;
 float curWithdrawAmount = 0;
 public void init()
 {
 try {
 presentation = Presentation.getPresentation(new
 URL(getDocumentBase(), "netbank.gui"));
 } catch (MalformedURLException ex) {
 ex.printStackTrace();
 }
 // Create a Player Panel
 setLayout(new BorderLayout());
 add("Center", player = new PlayerPanel());
 // Set the presentation
 player.setPresentation(presentation);
 // Create a Player utillity object
 util = new PlayerUtil(player);
 ((FolderWidget)util.getWidget("netbankFolder")).setTabMode(0);

 // Initialize the clock thread
 TimeT t;
 t = new TimeT((TextBoxWidget)util.getWidget("clockLabel"));
 t.start();
}
public void logoutRequest()
{
 util.setText("welcomeAccountNo", "");
 util.setText("welcomePinCode", "");
 util.setText("balanceBalance", "");
 util.setText("balanceHistory", "");

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

 util.setText("transferAccountNo", "");
 util.setText("transferAmount", "");
 util.setText("statusBar", "");
 curAcct.finalize();
 util.gotoPage("welcomePage");
}
public void displayBalance()
{
 String bal = (new Float(curAcct.checkAcctBalance())).toString();
 util.setText("balanceBalance", bal);
 Vector v = curAcct.checkHistory();
 String s = "";
 for (int i=0; i < v.size(); i++)
 s = s + v.elementAt(i) + "\n";
 util.setText("balanceHistory", s);
 util.setText("statusBar", "");
}
public boolean handleEvent(Event evt)
{
 if ((evt.id == Event.ACTION_EVENT) && (evt.target instanceof
 Widget)) {
 Widget w = (Widget)evt.target;
 String nm = w.getName();
 System.out.println("Event: " + nm);
 // The user has switched pages.
 if (nm.equals("netbankFolder")) {
 util.setText("statusBar", "");
 }
 if (nm.equals("loginPanelButton")) {
 util.gotoPage("welcomePage");
 }
 if (nm.equals("balancePanelButton")) {
 util.gotoPage("balancePage");
 }
 if (nm.equals("transferPanelButton")) {
 util.gotoPage("transferPage");
 }
 if (nm.equals("cashPanelButton")) {
util.gotoPage("withdrawPage");
 }
 // The user has logged in.
 if (nm.equals("welcomeOkButton")) {
 Long acct = new Long(util.getText("welcomeAccountNo").trim());
 String pin = util.getText("welcomePinCode").trim();
 util.setText("statusBar", "Please wait...");
 if ((acct.longValue() > 0) && (pin.length() > 0))
 {
 curAcct = new Account("jdbc:odbc:netbank", "dba", "javabank");
 if (curAcct.verifyPinCode(acct.longValue(), pin))
 {
 Vector v = curAcct.checkAcctOwnerName(acct.longValue());
 util.setText("statusBar", "Welcome " + v.elementAt(0) + ", "
+
 v.elementAt(1));
 util.gotoPage("balancePage");
 displayBalance();
 }
 else
 {

 // wrong info
 util.setText("statusBar", "Account number or PIN invalid!");
 logoutRequest();
 }
 }
 else
 util.setText("statusBar", "Please enter your account number first!");
}
 // The user has clicked refresh
 if (nm.equals("balanceRefreshButton")) {
 util.setText("statusBar", "Please wait...");
 displayBalance();
 }
 // The user has clicked OK to transfer money
 if (nm.equals("transferYesButton")) {
 Long acct = new Long(util.getText("transferAccountNo").trim());
 Float amnt = new Float(util.getText("transferAmount").trim());
 util.setText("statusBar", "Please wait...");
 if ((acct.longValue() > 0) && (amnt.floatValue() > 0))
 {
 if (0 == 0) // should verify the transferAcctNo
 {
 curAcct.makeTransfer(acct.longValue(), amnt.floatValue());
 Vector v = curAcct.checkAcctOwnerName(acct.longValue());
 util.setText("statusBar", "Transfered to " + v.elementAt(0)
+ ", "
 + v.elementAt(1));
 util.setText("transferAccountNo", "");
 util.setText("transferAmount", "");
 }
 else
 {
 // acct does not exist in database
 util.setText("statusBar", "INVALID ACCT NO OR PIN
 CODE!!!");
 }
 }
 else
 util.setText("statusBar", "Please enter the account number first!");
 }
 // Check the selection for cash
 if (nm.equals("withdraw20")) {
 curWithdrawAmount = 20;
 } else if (nm.equals("withdraw100")) {
 curWithdrawAmount = 100;
 } else if (nm.equals("withdraw200")) {
 curWithdrawAmount = 200;
 } else if (nm.equals("withdraw1000")) {
 curWithdrawAmount = 1000;
 }
 // The user has clicked withdraw
 if (nm.equals("withdrawWithdrawButton")) {
 util.setText("statusBar", "Please wait.");
 curAcct.cashWithdraw(curWithdrawAmount);
 util.setText("statusBar", "Please wait...");
 ImageWidget img = (ImageWidget) util.getWidget("bankNote");
 img.show();
 for (int i = 0; i < 3050; i++)

 {
 img.reshape(60, 120 - (i / 10), 100, 10 + (i / 10));
 img.repaint();
 }
//img.hide();
 }
 // The user has clicked EndPage to log out
 if (nm.equals("welcomeEndButton")) {
 logoutRequest();
 System.out.println("Ended");
 return true;
 }
 }
 return super.handleEvent(evt);
 }
}

TimeT.java

Listing 10-20 contains the source code for TimeT.java.

Listing 10-20: TimeT.java.

import java.io.*;
import java.lang.*;
import java.util.*;
import marimba.gui.*;
public class TimeT extends Thread {
 private Thread GetTime;
 private boolean bRun;
 TextBoxWidget tbw;
 public TimeT(TextBoxWidget t) {
 tbw = t;
 }
 public void start() {
 bRun = true;
 GetTime = new Thread(this);
 GetTime.start();
 }
 public void run() {
 while(bRun)
 {
 try {GetTime.sleep(1000);}
 catch (InterruptedException e) { }
 String today = (new Date()).toString();
 tbw.setText(today);
 }
 }
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

The Data Definition Language for This Example

Some keywords are Transact-SQL. You may want to modify the DDL (Data Definition Language) and DML (Data
Manipulation Language) for your DBMS. Listing 10-21 shows how to create tables.

Listing 10-21: DDL to create the tables for the Bank of Java applet.

%%%
% Create tables
%%%
CREATE TABLE "accounts"
(
 "acctno" integer NULL,
 "pincode" varchar(50) NULL,
 "ownerno" integer NULL,
 "datecreated" varchar(50) NULL,
 "balance" float NULL,
);
CREATE TABLE "clients"
(
 "ownerno" integer NULL,
 "name" varchar(50) NULL,
 "address" varchar(50) NULL,
);
CREATE TABLE "history"
(
 "tdate" varchar(50) NULL,
 "acctno" integer NULL,
 "typetransaction" varchar(20) NULL,
 "otheracct" integer NULL,
 "amount" float NULL,
 "ipaddress" varchar(50) NULL,
);
%%%
% Reload data
%%%
INSERT INTO "accounts" ("acctno","pincode","ownerno","datecreated","balance")
 VALUES ('1','1111','1','','992800');
INSERT INTO "accounts" ("acctno","pincode","ownerno","datecreated","balance")
 VALUES ('2','2222','2','','1257450');
INSERT INTO "accounts" ("acctno","pincode","ownerno","datecreated","balance")
 VALUES ('3','3333','3','','320700');
INSERT INTO "accounts" ("acctno","pincode","ownerno","datecreated","balance")
 VALUES ('4','4444','4','','8900750');
INSERT INTO "accounts" ("acctno","pincode","ownerno","datecreated","balance")
 VALUES ('5','5555','5','','-840');

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

INSERT INTO "accounts" ("acctno","pincode","ownerno","datecreated","balance")
 VALUES ('6','6666','6','','999999995904');
INSERT INTO "clients" ("ownerno", "name", "address")
 VALUES ('1','Bernard Van Haecke','Brussels, 1000');
INSERT INTO "clients" ("ownerno", "name", "address")
 VALUES ('2','John Doe','Imola Circuit, KM83');
INSERT INTO "clients" ("ownerno", "name", "address")
 VALUES ('3','Jane Doe','Imola Circuit, KM83');
INSERT INTO "clients" ("ownerno", "name", "address")
 VALUES ('4','Santa Claus','North Pole, 1');
INSERT INTO "clients" ("ownerno", "name", "address")
 VALUES ('5','Little Duke','Java Island, 1');
INSERT INTO "clients" ("ownerno", "name", "address")
 VALUES ('6','The Bank','Downtown LA');
INSERT INTO "history"
 ("tdate","acctno","typetransaction","otheracct","amount","ipaddress")
 VALUES ('23 Oct 1996 20:30:15 GMT','1','Transfert','4','-
1000','localhost/127.0.0.1');
INSERT INTO "history"
 ("tdate","acctno","typetransaction","otheracct","amount","ipaddress")
 VALUES ('23 Oct 1996 20:30:15
GMT','4','Received','1','1000','localhost/127.0.0.1');
INSERT INTO "history"
 ("tdate","acctno","typetransaction","otheracct","amount","ipaddress")
 VALUES ('24 Oct 1996 21:18:43 GMT','5','Withdraw','0','-
20','localhost/127.0.0.1');

At the time of this writing, only the JDBC-ODBC bridge and certain ODBC drivers support transaction isolation. Things
may change quickly, and by the time you read this chapter, more drivers will support this feature.

Dynamic Database Access

The next example illustrates how to use JDBC’s DatabaseMetaData and ResultSetMetaData methods.

A Java Database Explorer

The Java database explorer example runs as a stand-alone application. It can dynamically discover database content
thanks to a very intuitive graphical user interface. Numerous JDBC database metadata methods are exploited to enable
the exploration of virtually any relational database management system.

The main features of the program are these:

• Displays DBMS information such as specifications, supported features, and inherent limitations of the engine
• Explores most database objects, including database catalogs, tables, and stored procedures
• Gives relational information — that is, primary, imported, and exported keys for all tables
• Provides an interactive SQL query and update tool
• Displays ResultSets content in raw rows or formatted tabular output

The GUI part of this example was written using Marimba Bongo, which generates a 100-percent portable .gui file. This
file contains a persistent form of the widgets used in this example. The .gui file is editable using Marimba Bongo, a
demo version of which is on the CD-ROM accompanying this book. The unzipped Marimba classes must be in the
CLASSPATH or must be present on the WWW server to run this example. The GUI part of the application uses the
Marimba Bongo classes, which are persistified to a portable file. This use is the main reason why almost no GUI code is
present in the source. Each GUI control is a Marimba widget that has a name and whose properties are also persistified
in the permanent GUI file.

The main database explorer window is divided into three areas:

• User login information and controls
• Main database navigation widget — the left-sided tree control
• The result window

Figure 10-9 depicts the main window of this example.

Figure 10-9: Java database explorer main window.

The Screens

The following paragraphs explain how the user interacts with this stand-alone Java application.

Log in the Database

As shown in Figure 10-10, logging into the database engine requires a correct database URL, JDBC driver, user login,
and user password. The syntax of the URL is driver-dependant. The login and password are the identification and
authorization strings for a particular user in the database management system.

Figure 10-10: Supplying login data.

Press Login to log in to the DBMS. Use Logout to disconnect from the database engine without quitting the application.
Another JDBC URL may be entered, and the Login button may be pressed again. Logout may be used as a temporary
logout or before logging in as another user. Exit logs the user off the database and closes the application.

The Navigation Graphical Control

The tree widget on the left side controls the whole application and navigates within the database. The Session, Engine,
and Objects nodes intensively use database metadata methods to get information from the database. Double-clicking on
these tree nodes performs all actions. The resulting data displays in the right window.

The main features of this application include:

• Session information
• DBMS engine information
• Database object browsing
• Interactive SQL query tool

The tree widget shown in Figure 10-11 controls the whole program.

javascript:displayWindow('images/10-09.jpg',608,387)
javascript:displayWindow('images/10-09.jpg',608,387)
javascript:displayWindow('images/10-10.jpg',416,167)
javascript:displayWindow('images/10-10.jpg',416,167)

Figure 10-11: The main navigation control widget.

Previous Table of Contents Next

javascript:displayWindow('images/10-11.jpg',189,349)
javascript:displayWindow('images/10-11.jpg',189,349)

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Database Engine Specifications and Limitations

Four specification sheets are available. The categories are somewhat arbitrary, but it is more convenient to see them split
in four screens. Figure 10-12 illustrates one of the four sheets. It shows a small part of the features supported by the
database engine. Each topic has its corresponding JDBC database metadata method, which, in general, returns true or
false.

Figure 10-12: Database specs.

Browsing Database Catalogs and Their Content

The following items are the most interesting. The main navigation widget allows you to browse through many database
objects by expanding and collapsing its nodes. Each activation of a node issues database metadata methods to
dynamically discover the database objects. Figure 10-13 shows the database catalog nodes.

Figure 10-13: Database catalog nodes.

Figure 10-14 shows the catalog subnodes.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
javascript:displayWindow('images/10-12.jpg',398,255)
javascript:displayWindow('images/10-12.jpg',398,255)
javascript:displayWindow('images/10-13.jpg',190,304)
javascript:displayWindow('images/10-13.jpg',190,304)

Figure 10-14: Catalog subnodes.

For example, when double-clicking on the Objects Catalogs node, the program fetches information about database
objects such as system tables, user tables, and stored procedures. Catalogs are simply database subspaces. In a DBMS
managing multiple databases, a catalog is one database.

As shown in Figure 10-15, all table nodes give useful structure information such as the columns and types it contains,
and the primary, imported, and exported keys.

Figure 10-15: Tables.

The procedure node lists all database-stored procedures in the current catalog and displays the results of the
DatabaseMetaData.getProcedureColumns() method. This is shown in Figure 10-16.

Figure 10-16: Stored procedures.

The procedure node lists all database-stored procedures in the current catalog and displays the results of the
DatabaseMetaData.getProcedureColumns() method.

javascript:displayWindow('images/10-14.jpg',189,364)
javascript:displayWindow('images/10-14.jpg',189,364)
javascript:displayWindow('images/10-15.jpg',187,270)
javascript:displayWindow('images/10-15.jpg',187,270)
javascript:displayWindow('images/10-16.jpg',174,206)
javascript:displayWindow('images/10-16.jpg',174,206)

Extra Tools: An Interactive SQL Gadget

Figure 10-17 depicts the interactive SQL gadget.

Figure 10-17: Interactive SQL tool.

The tools node contains only one tool, ISQL. This is the interactive ISQL query tool explained earlier. It supports SQL
queries and SQL updates that can be entered in the little query window. Figure 10-18 shows the window that accepts
SQL statements.

Figure 10-18: SQL query window.

As shown in Figure 10-19, the results finally appear in a nice, formatted spreadsheet-like window. It is possible to sort
the data again with a mouse click on any column label.

Figure 10-19: SQL results window.

This stand-alone application is easily rewritten to run as an applet within a WWW browser such as Netscape Navigator
or Microsoft Internet Explorer. Adding BLOB import/export tools to allow the insertion and retrieval of multimedia
content such as pictures is an interesting exercise. See the specific examples on this topic at the beginning of this chapter.

Sources

Listing 10-22 contains the source code for the Java database explorer.

Listing 10-22: Jexplorer.java.

import java.io.*;
import java.awt.*;
import java.sql.*;
import java.lang.*;
import java.util.*;
import marimba.gui.*;
/**
* the main class
*/
public class Jexplorer extends PlayerFrame {
Connection conn = null;
DatabaseMetaData mtdt = null;
ResultSet rs = null;

javascript:displayWindow('images/10-17.jpg',608,387)
javascript:displayWindow('images/10-17.jpg',608,387)
javascript:displayWindow('images/10-18.jpg',335,131)
javascript:displayWindow('images/10-18.jpg',335,131)
javascript:displayWindow('images/10-19.jpg',595,273)
javascript:displayWindow('images/10-19.jpg',595,273)

String text = "";
static final String welcome =
 "\n Welcome to my universal database explorer.\n" +
 " This is a 100% Java stand-alone application. It works with JDBC 1.21\n\n" +
 " (C) 1996, 1997 by Bernard Van Haecke.\n" +
 " Comments and questions to: bernard.vanhaecke@Belgium.Sun.COM\n\n";
static final String extracomment = "\n\n\n\n\n\n" +
 " Choose a JDBC driver to target the database of your choice, then log\n" +
 " in and double click on any tree node to begin the exploration. Have fun!";
/**
 * constructor
 */
 public Jexplorer() {
 }
 /**
 * we handle all gui events here
 */
 public boolean handleEvent(Event evt)
 {
 try {
 if ((evt.id == Event.ACTION_EVENT) && (evt.target instanceof Widget)) {
 Widget w = (Widget)evt.target;
 String nm = w.getName();
 if (nm != null) System.out.println("Event: " + nm);
 // The user has logged in.
 if (nm.equals("dataLoginButton")) {
 String url = util.getText("dataURL").trim();
 String uid = util.getText("dataLogin").trim();
 String pwd = util.getText("dataPasswd").trim();
 String driver = util.getText("dataDriver").trim();
 text = welcome;
 try {
 Class.forName(driver);
 conn = DriverManager.getConnection(url, uid, pwd);
 if (conn != null) {
 text = text + "You are now logged in. Enjoy...";
 mtdt = conn.getMetaData();
 }
 }
 catch (SQLException ex) {
 text = text + "Could not log into the database. Verify the
 parameters:\nURL: " + url + "\nDriver: " + driver + "\n\n";
 text = text + ex;
 System.out.println(ex);
 }
 catch (java.lang.Exception ex) {
 System.out.println(ex);
 }
 util.setText("dataWindowControl", text);
 }
 // The user has clicked logout
 if (nm.equals("dataLogoutButton")) {
 TreeNodeWidget catalogRoot = (TreeNodeWidget) util.getWidget
("catalogsNode");
 catalogRoot.clear();
 util.show("isqlQueryWindow", false);
util.show("isqlResultWindow", false);
 if (conn != null) {
 conn.close();

 text = welcome + "You are now logged off. Bye bye...";
 }
 else text = welcome + extracomment;
 util.setText("dataWindowControl", text);
 }
 // The user has clicked exit
 if (nm.equals("dataExitButton")) {
 System.out.println("Normal termination");
 if (conn != null) conn.close();
 System.exit(0);
 return true;
 }
 // Database Node //
 if (nm.equals("databaseNode")) {
 util.setText("dataWindowLabel", nm);
 text = welcome;
 text = text + extracomment;
 util.setText("dataWindowControl", text);
 }
 // Session Node ///
 if (nm.equals("sessionNode")) {
 util.setText("dataWindowLabel", nm);
 text ="\nURL in use\t: " + mtdt.getURL() +
 "\nUsername\t: " + mtdt.getUserName();
 util.setText("dataWindowControl", text);
 }
 // Engine Node //
 if (nm.equals("engineNode")) {
 util.setText("dataWindowLabel", nm);
 text = "\nMiscellaneous database engine informations.";
 util.setText("dataWindowControl", text);
 }
 // give database informations
 if (nm.equals("infoNode")) {
 util.setText("dataWindowLabel", nm);
 text = "\nDatabase\t: " + mtdt.getDatabaseProductName() +
 "\nVersion\t: " + mtdt.getDatabaseProductVersion() +
 "\n\nDriver\t: " + mtdt.getDriverName() +
 "\nVersion\t: " + mtdt.getDriverVersion();
 util.setText("dataWindowControl", text);
 }
 // give database specs
 if (nm.equals("specsNode")) {
 util.setText("dataWindowLabel", nm);
 text = "\nUses local files\t\t\t\t\t: " + mtdt.usesLocalFiles() +
 "\nUses local file per table\t\t\t: " + mtdt.
usesLocalFilePerTable() +
 "\nNulls are sorted high\t\t\t: " + mtdt.nullsAreSortedHigh
() +
 "\nNulls are sorted at end\t\t\t: " + mtdt.nullsAreSortedAtEnd() +
 "\nSupports mixed case identifiers\t: " +
 mtdt.supportsMixedCaseIdentifiers() +
 "\nStores mixed case identifiers\t\t: " +
 mtdt.storesMixedCaseIdentifiers() +
 "\nIdentifier quote string\t\t\t: " +
 mtdt.getIdentifierQuoteString() +
 "\n\nSupported SQL keywords\t: " + mtdt.getSQLKeywords() +
 "\n\nNumeric functions\t: " + mtdt.getNumericFunctions() +

 "\n\nString functions\t: " + mtdt.getStringFunctions() +
 "\n\nSystem functions\t: " + mtdt.getSystemFunctions() +
 "\n\nTime and date functions\t: " +
 mtdt.getTimeDateFunctions();
 util.setText("dataWindowControl", text);
 }
 // give database features
 if (nm.equals("featuresNode")) {
 util.setText("dataWindowLabel", nm);
 text = "\nThe database supports:\n" +
 "\nMinimun SQL grammar\t\t: " +
 mtdt.supportsMinimumSQLGrammar() +
 "\nCore SQL grammar\t\t\t: " +
 mtdt.supportsCoreSQLGrammar() +
 "\nExtended SQL grammar\t\t: " +
 mtdt.supportsExtendedSQLGrammar() +
 "\nANSI-92 Entry Level SQL\t: " +
 mtdt.supportsANSI92EntryLevelSQL() +
 "\nANSI-92 Intermediate SQL\t: " +
 mtdt.supportsANSI92IntermediateSQL() +
 "\nANSI-92 Full SQL grammar\t: " +
 mtdt.supportsANSI92FullSQL() +
 "\nIntegrity enhancement facility\t: " +
 mtdt.supportsIntegrityEnhancementFacility() +
 "\nOuter joins\t\t\t\t: " + mtdt.supportsOuterJoins() +
 "\nFull outer joins\t\t\t\t: " +
 mtdt.supportsFullOuterJoins() +
 "\nLimited outer joins\t\t\t: " +
 mtdt.supportsLimitedOuterJoins() +
 "\n\nAlter table with add column\t: " +
 mtdt.supportsAlterTableWithAddColumn() +
 "\nAlter table with drop column\t: " +
 mtdt.supportsAlterTableWithDropColumn() +
 "\nColumn aliasing\t\t\t: " +
 mtdt.supportsColumnAliasing() +
 "\nTable correlation names\t\t: " +
 mtdt.supportsTableCorrelationNames() +
 "\nExpressions in order by\t\t: " +
 mtdt.supportsExpressionsInOrderBy()
 +
 "\nUnrelated order by\t\t\t: " +
 mtdt.supportsOrderByUnrelated() +
 "\nGroup by\t\t\t\t\t: " + mtdt.supportsGroupBy() +
 "\nUnrelated group by\t\t\t: " +
 mtdt.supportsGroupByUnrelated() +
 "\nGroup by beyond select\t\t: " +
 mtdt.supportsGroupByBeyondSelect() +
 "\nLike escape clause\t\t\t: " +
 mtdt.supportsLikeEscapeClause() +
 "\nMultiple result sets\t\t\t: " +
 mtdt.supportsMultipleResultSets() +
 "\nMultiple transactions\t\t: " +
 mtdt.supportsMultipleTransactions() +
 "\nNon nullable columns\t\t: " +
 mtdt.supportsNonNullableColumns()
 +
 "\n\nTerm for schemas\t: " + mtdt.getSchemaTerm() +
 "\nTerm for procedures\t: " + mtdt.getProcedureTerm() +
 "\nTerm for catalogs\t: " + mtdt.getCatalogTerm() +

 "\n\n...";
 util.setText("dataWindowControl", text);
 }
 // give database limitations
 if (nm.equals("limitationsNode")) {
 util.setText("dataWindowLabel", nm);
 text = "\nMaximums:\n" +
 "\nBinary literal length\t\t: " +
 mtdt.getMaxBinaryLiteralLength() +
 "\nCharacter literal length\t: " +
 mtdt.getMaxCharLiteralLength() +
 "\nColumn name length\t: " +
 mtdt.getMaxColumnNameLength() +
 "\nColumns in group by\t\t: " +
 mtdt.getMaxColumnsInGroupBy() +
 "\nColumns in index\t\t: " + mtdt.getMaxColumnsInIndex()
+
 "\nColumns in order by\t\t: " +
 mtdt.getMaxColumnsInOrderBy() +
 "\nColumns in select\t\t: " +
 mtdt.getMaxColumnsInSelect() +
 "\nColumns in table\t\t: " + mtdt.getMaxColumnsInTable()
 +
 "\nNumber of connections\t: " + mtdt.getMaxConnections()
 +
 "\n";
 util.setText("dataWindowControl", text);
 }
 // Object Node //
 if (nm.equals("objectsNode")) {
 util.setText("dataWindowLabel", nm);
 text = "\nDatabase objects.";
 util.setText("dataWindowControl", text);
 }
 // browse database catalogs
 if (nm.equals("catalogsNode")) {
 util.setText("dataWindowLabel", nm);
 text = getRS(mtdt.getCatalogs());
 util.setText("dataWindowControl", text);
 // get a vector of catalogs
 Vector v = getRSColumnAsVector(mtdt.getCatalogs(), "TABLE_CAT");
 // Vector v = getRSColumnAsVector(mtdt.getCatalogs(), "TABLE_QUALIFIER");
 boolean useCatalog = true;
 // create a default catalog if the database
 // does not support catalogs
 if (v.size() == 0) {
 useCatalog = false;
 v.addElement("default");
 }
 // add nodes for each catalog
 TreeNodeWidget catalogRoot = (TreeNodeWidget) util.getWidget
("catalogsNode");
 if (catalogRoot.hasChildren()) catalogRoot.clear();
 for (int i=0; i < v.size(); i++) {
 addCatalogNode(catalogRoot, (String) v.elementAt(i));
 }
 }
 // browse tables in this catalog

 if (nm.startsWith("newTableColumnsNode.")) {
 util.setText("dataWindowLabel", nm);
 int p1 = nm.indexOf(".");
 int p2 = nm.indexOf(".", p1 + 1);
 String catalog = nm.substring(p1 + 1, p2);
 if (catalog.equals("null")) catalog = null;
 String table = nm.substring(p2 + 1);
 text = getRS(mtdt.getColumns(catalog, null, table, "%"));
 util.setText("dataWindowControl", text);
 }
 // browse primary keys for this table
 if (nm.startsWith("newTablePrimaryKeysNode.")) {
 util.setText("dataWindowLabel", nm);
 int p1 = nm.indexOf(".");
 int p2 = nm.indexOf(".", p1 + 1);
 String catalog = nm.substring(p1 + 1, p2);
 if (catalog.equals("null")) catalog = null;
 String table = nm.substring(p2 + 1);
 text = getRS(mtdt.getPrimaryKeys(catalog, null, table));
 util.setText("dataWindowControl", text);
 }
 // browse imported keys for this table
 if (nm.startsWith("newTableImportedKeysNode.")) {
 util.setText("dataWindowLabel", nm);
 int p1 = nm.indexOf(".");
 int p2 = nm.indexOf(".", p1 + 1);
 String catalog = nm.substring(p1 + 1, p2);
 if (catalog.equals("null")) catalog = null;
 String table = nm.substring(p2 + 1);
 text = getRS(mtdt.getImportedKeys(catalog, null, table));
 util.setText("dataWindowControl", text);
 }
 // browse exported keys for this table
 if (nm.startsWith("newTableExportedKeysNode.")) {
 util.setText("dataWindowLabel", nm);
 int p1 = nm.indexOf(".");
 int p2 = nm.indexOf(".", p1 + 1);
 String catalog = nm.substring(p1 + 1, p2);
 if (catalog.equals("null")) catalog = null;
 String table = nm.substring(p2 + 1);
 text = getRS(mtdt.getExportedKeys(catalog, null, table));
 util.setText("dataWindowControl", text);
 }
 // browse procedures in this catalog
 if (nm.startsWith("newProcedureNode.")) {
 util.setText("dataWindowLabel", nm);
 int p1 = nm.indexOf(".");
 int p2 = nm.indexOf(".", p1 + 1);
 String catalog = nm.substring(p1 + 1, p2);
 if (catalog.equals("null")) catalog = null;
 String procedure = nm.substring(p2 + 1);
 text = getRS(mtdt.getProcedureColumns(catalog, null, procedure, "%"));
 util.setText("dataWindowControl", text);
 }
 // Tools Node ///
 if (nm.equals("toolsNode")) {
 util.setText("dataWindowLabel", nm);
 text = "";
 util.setText("dataWindowControl", text);

 }
 // display the isql query window
 if (nm.equals("isqlNode")) {
 util.setText("dataWindowLabel", nm);
 text = "\nType your queries in the floating query window...";
 util.setText("dataWindowControl", text);
 util.show("isqlQueryWindow", true);
 }
 // execute the sql query
 if (nm.equals("isqlGoButton")) {
 String query = util.getText("isqlQueryText");
 // test if we want a nicely formatted result
 if (((CheckBoxWidget) util.getWidget("isqlFormatCheckBox")).
getBooleanValue())
 {
 TableWidget tbl = (TableWidget) util.getWidget
("isqlResultTable");
 tbl.removeAllRows();
 tbl.removeAllColumns();
 util.show("isqlResultWindow", true);
 ResultSet rs = getSingleRS(query);
 Vector headers = getRSColumnHeadersAsVector(rs);
 int i;
 for (i=0; i<headers.size(); i++)
//tbl.addColumn((String) headers.elementAt(i), ((String) headers.elementAt(i)).
length());
 tbl.addColumn((String) headers.elementAt(i));
 Vector rows = getRSRowsAsVector(rs);
 for (i=0; i<rows.size(); i++)
 tbl.addRow((Vector) rows.elementAt(i));
 }
 else
 {
 text = getMultipleRS(query);
 util.appendText("dataWindowControl", "\n\n" + text);
 }
 }
 // close the isql query window
 if (nm.equals("isqlCloseButton")) {
 util.show("isqlQueryWindow", false);
 util.show("isqlResultWindow", false);
 }
 // close the isql result window
 if (nm.equals("resultCloseButton")) {
 util.show("isqlResultWindow", false);
 }
 }
 }
 catch(java.lang.Exception ex) {
 // ex.printStackTrace();
 }
 return super.handleEvent(evt);
}
/**
* create a new catalog node
*/
public void addCatalogNode(TreeNodeWidget w, String label)
{

 w.hide();
 String catalogName = label;
 if (label.equals("default")) catalogName = null;
 TreeNodeWidget newCatalogNode = new TreeNodeWidget();
 newCatalogNode.setName("newCatalogNode." + catalogName);
 newCatalogNode.setText(label);
 newCatalogNode.setImage("folder.gif");
 w.addSorted(newCatalogNode);
 // add main node for tables
 TreeNodeWidget newCatalogTablesNode = addNode(newCatalogNode,
 "newCatalogTablesNode." + catalogName,
 "Tables", "folder.gif");
 // add nodes for system tables
 TreeNodeWidget newTablesSystemNode = addNode(newCatalogTablesNode,
 "newTablesSystemNode." + catalogName,
 "System", "folder.gif");
 String types[] = new String[1];
 types[0] = "SYSTEM TABLE";
 Vector v = null;
 try {
 v = getRSColumnAsVector(mtdt.getTables(catalogName, null, "%", types),
 "TABLE_NAME");
 } catch (SQLException ex) { ex.printStackTrace(); }
 if (newTablesSystemNode.hasChildren()) newTablesSystemNode.clear();
 for (int i=0; i < v.size(); i++) {
 addTableNode(newTablesSystemNode, catalogName, (String) v.elementAt(i));
 }
 // add nodes for system tables
 TreeNodeWidget newTablesUserNode = addNode(newCatalogTablesNode,
"newTablesUserNode." + catalogName,
 "User", "folder.gif");
 types[0] = "TABLE";
 v = null;
 try {
 v = getRSColumnAsVector(mtdt.getTables(catalogName, null, "%", types),
 "TABLE_NAME");
 } catch (SQLException ex) { ex.printStackTrace(); }
 if (newTablesUserNode.hasChildren()) newTablesUserNode.clear();
 for (int i=0; i < v.size(); i++) {
 addTableNode(newTablesUserNode, catalogName, (String) v.elementAt(i));
 }
 // add main node for stored procedures
 TreeNodeWidget newCatalogProceduresNode = addNode(newCatalogNode,
 "newCatalogProceduresNode." + catalogName,
 "Procedures", "folder.gif");
 // add nodes for procedures
 v = null;
 try {
 v = getRSColumnAsVector(mtdt.getProcedures(catalogName, null, "%"),
 "PROCEDURE_NAME");
 } catch (SQLException ex) { ex.printStackTrace(); }
 if (newCatalogProceduresNode.hasChildren()) newCatalogProceduresNode.clear();
 for (int i=0; i < v.size(); i++) {
 addNode(newCatalogProceduresNode, "newProcedureNode." + catalogName + "."
 + (String) v.elementAt(i),
 (String) v.elementAt(i), "archivs.gif");
 }
 // collapse the catalog leaves
 w.collapseAll();

 w.show();
}
/**
* create a new node for a table
*/
public void addTableNode(TreeNodeWidget w, String catalog, String label)
{
 TreeNodeWidget newTableNode = new TreeNodeWidget();
 newTableNode.setName("newTableNode." + catalog + "." + label);
 newTableNode.setText(label);
 newTableNode.setImage("table.gif");
 w.addSorted(newTableNode);
 addNode(newTableNode, "newTableColumnsNode." + catalog + "." + label,
 "Columns", "archivs.gif");
 addNode(newTableNode, "newTablePrimaryKeysNode." + catalog + "." + label,
 "Primary Keys", "archivs.gif");
 addNode(newTableNode, "newTableImportedKeysNode." + catalog + "." + label,
 "Imported Keys", "archivs.gif");
 addNode(newTableNode, "newTableExportedKeysNode." + catalog + "." + label,
 "Exported Keys", "archivs.gif");
 w.collapseAll();
}
/**
* add a node
*/
public TreeNodeWidget addNode(TreeNodeWidget w, String name, String text, String
 image) {
 TreeNodeWidget child = new TreeNodeWidget();
 child.setName(name);
 child.setText(text);
 child.setImage(image);
 w.add(child);
 return child;
}
/**
* transform one column of a resultset into a vector
*/
public Vector getRSColumnAsVector(ResultSet rs, String column)
{
 Vector v = new Vector();
 try {
 while (rs.next()) {
 v.addElement(rs.getString(column));
 }
 } catch (SQLException ex) { ex.printStackTrace(); }
return v;
}
/**
* return the resultset of a simple query
*/
public ResultSet getSingleRS(String sqlText)
{
 ResultSet rs = null;
 try {
 Statement st = conn.createStatement();
 if (st.execute(sqlText)) {
 // okay it's not an update count
 rs = st.getResultSet();

 }
 } catch (SQLException ex) { ex.printStackTrace(); }
 return rs;
}
/**
* return the result of a statement as text
* the statement may be an update, a query, or mix
*/
public String getMultipleRS(String sqlText) {
 boolean ResultSetIsAvailable;
 boolean moreResultsAvailable;
 int i = 0;
 int res=0;
 String result = "";
 try {
 Statement curStmt = conn.createStatement();
 ResultSetIsAvailable = curStmt.execute(sqlText);
 ResultSet rs = null;
 for (moreResultsAvailable = true; moreResultsAvailable;)
 {
 if (ResultSetIsAvailable)
 {
 if ((rs = curStmt.getResultSet()) != null)
 {
 // we have a resultset
 result = getRS(rs);
 }
 }
 else
 {
 if ((res = curStmt.getUpdateCount()) != -1)
 {
 // we have an updatecount
 result = res + " row(s) affected.";
 }
 // else no more results
 else
 {
 moreResultsAvailable = false;
 }
 }
 if (moreResultsAvailable)
 {
 ResultSetIsAvailable = curStmt.getMoreResults();
 }
 }
 if (rs != null) rs.close();
 curStmt.close();
 }
 catch (SQLException ex) {
 // Unexpected SQL exception.
 // Occurs often with weird jdbc driver implementations.
 // ex.printStackTrace ();
 }
 catch (java.lang.Exception ex) {
 // Got some other type of exception. Dump it.
 // ex.printStackTrace ();
 }
 return result;

}
/**
* return the result of a query as text
*/
public String getRS(ResultSet rs) {
 String s = "\n";
 int i,j;
 Vector headers = getRSColumnHeadersAsVector(rs);
 Vector rows = getRSRowsAsVector(rs);
 for (i = 0; i < headers.size(); i++)
 {
 if (i > 0) s += ", ";
 s += headers.elementAt(i);
 }
 s += "\n\n";
 for (i = 0; i < rows.size(); i++)
 {
 for (j = 0; j < ((Vector) rows.elementAt(i)).size(); j++)
 {
 if (j > 0) s += ", ";
 s += ((Vector) rows.elementAt(i)).elementAt(j);
 }
 s += "\n";
 }
 return s;
}
/**
* return the column headers of a resultset as vector
*/
public Vector getRSColumnHeadersAsVector(ResultSet rs) {
 int i;
 Vector v = new Vector();
 try {
 ResultSetMetaData rsmd = rs.getMetaData();
 int numCols = rsmd.getColumnCount();
 // fetch column headers
 for (i = 1; i <= numCols; i++)
 {
 v.addElement(rsmd.getColumnLabel(i));
 }
 }
 catch (SQLException ex)
 {
 }
 return v;
}
/**
* return a resultset as vector
*/
public Vector getRSRowsAsVector(ResultSet rs) {
 Vector v = new Vector();
 Vector r = null;
 int i;
 try {
 ResultSetMetaData rsmd = rs.getMetaData();
 int numCols = rsmd.getColumnCount();
 // step through the rows
 while (rs.next())

 {
 // process the columns
 r = new Vector();
 for (i = 1; i <= numCols; i++)
 {
 r.addElement(rs.getString(i));
 }
 v.addElement(r);
 }
 rs.close();
 }
 catch (SQLException ex)
 {
 }
 return v;
}
/**
* add a new entry in the url and driver listboxes
*/
public void addDriverInfo(String url, String driver)
{
// add entry for this driver provider
((ChoiceWidget) util.getWidget("dataURL")).addChoice(url);
((ChoiceWidget) util.getWidget("dataDriver")).addChoice(driver);
}
/**
* the main program
*/
public static void main(String argv[]) {
 // Create the frame
 Jexplorer frm = new Jexplorer();
 frm.util.setPresentation("Jexplorer.gui");
 frm.util.setText("dataWindowControl", welcome + extracomment);
 // allow miscellaneous drivers and urls to be preset
 // jdbc-odbc bridge
 frm.addDriverInfo("jdbc:odbc:data-source-name", "sun.jdbc.odbc.
JdbcOdbcDriver");
 // sybase's driver
 frm.addDriverInfo("jdbc:sybase:Tds:host.domain.com:8192", "com.sybase.jdbc.
SybDriver");
 // connect software's sybase driver
 frm.addDriverInfo("jdbc:sybase://host.domain.com:8192", "connect.sybase.
SybaseDriver");
 // funny driver
 frm.addDriverInfo("foo:bar:database", "foo.bar.Driver");
 frm.show();
}
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Multitier Architectures

In Chapter 8, we discussed different approaches to software partitioning. The next example uses the Remote Method
Invocation (RMI) of Java 1.1.

Remote Method Invocation and JDBC

Remote method invocation is now part of Java Development Kit 1.1. As we saw in the chapter discussing three-tiered
approaches, RMI allows Java objects to be distributed and shared accross computers and networks. This example uses
RMI between the client and the middleware, and JDBC between the middleware and the database server.

RMI combined with JDBC for database access is a simple, but efficient, enabler for software partitioning. Indeed, as in
this example, the client performs presentation (GUI) tasks only, the middleware stores the application’s logic, and the
database provides a persistent and coherent storage for the data.

This example deals with cars. In this example, all the cars are built in hypothetical car factories, and there is one factory
for each different car brand. Clients are allowed to invoke various methods on the cars and factories, although these
objects are not local client objects to them. They are remote objects. This means that all methods called on these objects
are executed where these objects reside — that is, on the RMI server. If parameters must be passed to such methods, they
are serialized by RMI and passed to the server object that will deserialize them.

The example has these classes:

• Car.java is an interface that extends java.rmi.remote
• CarImpl.java implements Car
• CarFactory.java is an interface that extends java.rmi.remote
• CarFactoryImpl.java implements CarFactory
• CarSupplierServer.java is a server. It brings car factories to life and makes them reachable through the RMI
mechanism
• CarSales.java is a client that deals with objects such as Car and CarFactories

The client only has access to the Car and CarFactory interfaces. All methods invoked on these objects are actually
implemented within the RMI server, which, in turn, performs the calls to the database through JDBC. Figure 10-20
illustrates the whole architecture for this example.

Figure 10-20: Three-tiered architecture of the car factory example.

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
javascript:displayWindow('images/10-20.jpg',640,396)
javascript:displayWindow('images/10-20.jpg',640,396)

Instead of providing object persistency at the Car level, a simpler option was choosen: the CarFactory level provides
persistent storage. Practically, this means information about the car factories is saved in a database table and loaded by
the CarFactoryImpl constructor. The database immediately reflects all updates of the car factories. Another option is to
save the different instances of CarFactory in their finalize() method whenever the RMI server program terminates.

Database Side

The data structure is quite simple. Here is the SQL to create the table used for this example. The primary key is
composed of two fields: serialno and brand.

CREATE TABLE cars
(serialno INT
NULL,
brand VARCHAR(12) NULL,
model VARCHAR(12) NULL,
color VARCHAR(12) NULL,
price INT NULL,
owner VARCHAR(12) NULL)
GO
INSERT INTO cars VALUES
(1000000, 'Volkswagen', 'Golf GL', 'black', NULL, '')
GO

The following SQL statement queries the content of the table after a few executions of the RMI client and RMI server:

1> SELECT * FROM cars
2> ORDER BY brand, serialno
3> GO
serialno brand model color price owner
----------- ------------ ------------ ------------ ----------- ------------
1000001 Audi A6 black NULL
1000002 Audi A8 yellow NULL
1000003 Audi A6 black NULL
1000004 Audi A8 yellow NULL
1000005 Audi A6 black NULL
1000006 Audi A8 yellow NULL
1000007 Audi A6 black NULL
1000008 Audi A8 yellow NULL
1000001 BMW 528i fjordgrau NULL
1000002 BMW 750Li articsilber NULL
1000003 BMW 528i fjordgrau NULL
1000004 BMW 750Li articsilber NULL
1000005 BMW 528i fjordgrau NULL
1000006 BMW 750Li articsilber NULL
1000007 BMW 528i fjordgrau NULL
1000008 BMW 750Li articsilber NULL
1000000 Volkswagen Golf GL black NULL
1000001 Volkswagen Golf CL darkred NULL
1000002 Volkswagen Golf CL darkred NULL
1000003 Volkswagen Golf CL darkred NULL
1000004 Volkswagen Golf CL darkred NULL
(21 rows affected)

RMI Server Side

A script file starts the server and an RMI service called the RMI registry. As soon as it launches, the CarSupplierServer
object recreates car factories and cars from the data in the database. CarFactory objects are thus created and bound to a
name. Client lookups use this name to obtain references to these remote objects. Here is the output of the
CarSupplierServer when launched on Unix (Windows users: the RMI registry command must be executed in a separate
DOS shell).

csh: start
starting registy
[1] 7852
starting CarSupplierServer
press CTRL-C to interrupt server
type: java CarSales to start client
Creating Car Factories
CarFactory: Loaded new Car:Car: model=Audi model=A6 color=black serial=1
 owner=
CarFactory: Loaded new Car:Car: model=Audi model=A8 color=yellow serial=2
 owner=
CarFactory: Loaded new Car:Car: model=Audi model=A8 color=yellow serial=3
 owner=
CarFactory: Loaded new Car:Car: model=Audi model=A8 color=pink
 serial=4 owner=
CarFactory: Loaded new Car:Car: model=BMW model=528i color=fjordgrau serial=1
 owner=
CarFactory: Loaded new Car:Car: model=BMW model=750Li color=articsilber serial=2
 owner=
CarFactory: Loaded new Car:Car: model=BMW model=528i color=applegreen serial=3
owner=
CarFactory: Loaded new Car:Car: model=BMW model=528i color=sunblue serial=5
owner=
CarFactory: Loaded new Car:Car: model=Volkswagen model=Golf TDI color=black
 serial=1000000 owner=
CarFactory: Loaded new Car:Car: model=Volkswagen model=Golf CL color=darkred
 serial=1000001 owner=
CarFactory: Loaded new Car:Car: model=Volkswagen model=Golf TDI color=deep space
b
 serial=1000002 owner=
Registring Car Factories

Client Side

The client programs are started by simply running CarSales as shown in the command line:

% java CarSales

CarSales calls a lookup method to obtain references to remote objects. Once obtained, these references are used to
invoke various methods defined in CarFactory and implemented in CarFactoryImpl.

The window shown in Figure 10-21 appears on the screen, displaying a trace of the different actions the client performs.

Figure 10-21: The RMI client window.

As soon as the client launches, the RMI server logs all the actions it performs on behalf of the client.

CarFactory Audi: request for all cars. 4 returned.
CarFactory BMW: request for all cars. 4 returned.
CarFactory Volkswagen: request for all cars. 3 returned.
CarFactory Audi: request for all cars. 4 returned.
CarFactory: Created new Car:Car: model=Audi model=A8 color=orange serial=5
 owner=None
CarFactory Audi: request for all cars. 5 returned.
CarFactory: Deleted Car:CarImpl_Stub[RemoteStub [ref:
 [endpoint:[guadalajara:37065](remote),objID:[14]]]]
CarFactory Audi: request for all cars. 4 returned.

Previous Table of Contents Next

javascript:displayWindow('images/10-21.jpg',570,712)
javascript:displayWindow('images/10-21.jpg',570,712)

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

Car.java

This is the interface for cars. It extends java.rmi.Remote and is implemented by the CarImpl class. All methods invoked
on Car instances trigger respective methods implemented by CarImpl instances. Listing 10-23 shows the source code for
Car.java.

Listing 10-23: Car.java.

//
// Car.java
//
// (C) 1996 Wim De Munck mailto: wimdm@dm-mediaware.be
//
// Interface describing stub Car functionality
// the actual implementation will be the responibility of
// CarImpl; Car's will be created by a remote factory object:
// CarFactory and CarFactoryImplementation.
//
import java.rmi.Remote;
import java.rmi.RemoteException;
public interface Car extends Remote {
 public int getPrice () throws RemoteException;

 public int getTopSpeed() throws RemoteException;
 public long getSerialNr() throws RemoteException;
 public void sellTo (String owner) throws RemoteException;
 public String getOwner () throws RemoteException;

 public String getColor () throws RemoteException;
 public String getModel () throws RemoteException;

 public String getObjectString () throws RemoteException;
}

CarImpl.java

CarImpl.java class implements Car. It contains various methods to perform miscellaneous actions on Cars. Listing 10-24
is the source code for CarImpl.java.

Listing 10-24: CarImpl.java.

//
// CarImpl.java
//

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

// (C) 1996 Wim De Munck mailto: wimdm@dm-mediaware.be
//
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
public class CarImpl extends UnicastRemoteObject implements Car {
 private int price;
 private long serialNr;
 private String brand;
 private String model;
 private String color;
 private String owner = null;
 public CarImpl (String brand, String model, String color, long serialNr)
 throws RemoteException {
 this.brand = brand;
 this.model = model;
 this.color = color;
 this.serialNr = serialNr;
 }
 public CarImpl (String brand, String model, String color, long serialNr,
String owner)
 throws RemoteException {
 this.brand = brand;
 this.model = model;
 this.color = color;
 this.serialNr = serialNr;
 this.owner = owner;
 }
 public int getPrice () throws RemoteException {
 return 0; // Catalog.getPrice(brand, model);
 }

 public int getTopSpeed() throws RemoteException {
 return 0; // Catalog.getTopSpeed(brand, model);
 }
 public long getSerialNr() throws RemoteException {
 return serialNr;
 }
 oid sellTo (String owner) throws RemoteException {
 this.owner = owner;
 }
 public String getOwner () throws RemoteException {
 return owner;
 }
 public String getColor () throws RemoteException {
 return color;
 }
 public String getBrand () throws RemoteException {
 return brand;
 }
 public String getModel () throws RemoteException {
 return model;
 }
 public String toString () {
 return "Car: model=" + brand + " model=" + model + " color=" + color +
 " serial=" + serialNr + " owner=" + ((owner == null)? "None" : owner);
 }
 public String getObjectString () throws RemoteException {
 return this.toString();
 }

}

CarFactory.java

The CarFactory class is an interface implemented by CarFactoryImpl. Like the Car interface, CarFactory inherits from
java.rmi.Remote. Listing 10-25 is the source code for CarFactory.java.

Listing 10-25: CarFactory.java.

//
// CarFactory.java
//
// (C) 1996 Wim De Munck mailto: wimdm@dm-mediaware.be
//
// interface describing stub CarFactory functionality
// the actual implementation will be the responibility of
// CarFactoryImpl.
//
import java.rmi.Remote;
import java.rmi.RemoteException;
import java.sql.*;
public interface CarFactory extends Remote {
 public Car createCar (String model, String color)
 throws RemoteException, SQLException;
 public Car getCar (long serialNr)
 throws RemoteException;
 public Car[] getAll () throws RemoteException;
 public boolean deleteCar (Car car) throws RemoteException, SQLException;
 public String getObjectString () throws RemoteException;
}

CarFactoryImpl.java

CarFactoryImpl implements CarFactory and provides connectivity to the database through JDBC. It manipulates objects
whose lifetime is longer than the application’s lifetime. These objects are persistified, stored in a database table, and
loaded by the CarFactoryImpl constructor upon initialization.

The methods that perform updates of data call JDBC and execute SQL statements to synchronize the data in the
database. Listing 10-26 shows the source code for CarFactoryImpl.java.

Listing 10-26: CarFactoryImpl.java.

//
// CarFactoryImpl.java
//
// (C) 1996 Wim De Munck mailto: wimdm@dm-mediaware.be
//
// interface describing stub CarFactory functionality
// the actual implementation will be the responibility of
// CarFactoryImpl.
//
import java.util.Hashtable;
import java.util.Enumeration;
import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;
import java.sql.*;
public class CarFactoryImpl extends UnicastRemoteObject implements CarFactory {
 private String brand;
 private long lastSerialNr = 1000000;
 private Hashtable cars = new Hashtable();
 // local variables for connection state
 private Connection conn;
 private String uid = "guest";
 private String pwd = "sybase";
 private String table = "cars";
 // url for sybase's driver
 private String url = "jdbc:sybase:Tds:guadalajara:8192";
 private String driver = "com.sybase.jdbc.SybDriver";
 public CarFactoryImpl (String brand) throws RemoteException, SQLException,
Exception
 {
 Class.forName(driver);
 conn = DriverManager.getConnection(url, uid, pwd);
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM " + table
 + " WHERE brand = '" + brand + "'");

 while (rs.next()) {
 wakeupCar(rs.getInt("serialno"),
 rs.getString("brand"),
 rs.getString("model"),
 rs.getString("color"),
 rs.getString("owner"));
 }
 rs = stmt.executeQuery("SELECT MAX(serialno) FROM " + table
 + " WHERE brand = '" + brand + "'");
 rs.next();
 lastSerialNr = rs.getLong(1);
 rs.close();
 stmt.close();
 this.brand = brand;
}
protected void finalize() throws SQLException {
 conn.close();
}
public void wakeupCar (int sn, String brand, String model, String color, String
owner)
 throws RemoteException {
 CarImpl car = new CarImpl (brand, model, color, sn, owner);
 cars.put("SN"+car.getSerialNr(), car);
 System.out.println("CarFactory: Loaded new Car:" + car);
 }
 public Car createCar (String model, String color)
 throws RemoteException, SQLException {
 CarImpl car = new CarImpl (brand, model, color, ++lastSerialNr);
 Statement stmt = conn.createStatement();
 int res = stmt.executeUpdate("INSERT INTO " + table
 + "(serialno, brand, model, color, owner) VALUES ("
 + car.getSerialNr() + ", '" + brand + "', '" + model
 + "', '" + color + "', '')");
 stmt.close();
 cars.put ("SN" + car.getSerialNr(), car);
 System.out.println("CarFactory: Created new Car:" + car);

 return car;
 }
 public Car getCar (long serialNr) throws RemoteException {
 return (Car)cars.get("SN"+serialNr);
 }
 /**
 * get all cars without worrying about synchronization
 */
 public Car[] getAll () throws RemoteException {
 Car [] allcars = new Car[cars.size()];
 int i = 0;
 Enumeration e = cars.elements();
 while (e.hasMoreElements()) {
 allcars[i++] = (Car)e.nextElement();
 }
 System.out.println("CarFactory " + brand + ": request for all cars. " + i
+ "
 returned.");
 return allcars;
 }
 public boolean deleteCar (Car car) throws RemoteException, SQLException {
 long sn = car.getSerialNr();
 if (cars.remove("SN"+ sn) != null) {
 Statement stmt = conn.createStatement();
 int res = stmt.executeUpdate("DELETE " + table
 + " WHERE brand = '" + brand + "' AND serialno = " + sn + "");
 stmt.close();
 System.out.println("CarFactory: Deleted Car:" + car);
 return true;
 }
 else {
 return false;
 }
 }
 public String toString () {
 return "CarFactory: " + brand + " lastNr=" + lastSerialNr;
 }
 public String getObjectString () throws RemoteException {
 return this.toString();
 }
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

CarSales.java

CarSales.java is the client class. CarSales is a stand-alone application that looks up CarFactories in the RMI server to get
references to these remote objects.

The application tries to obtain references to three remote CarFactories. Once it obtains the references, actions such as
selecting cars, ordering cars, selling cars, and destroying cars may be performed. This RMI client only refers to the
CarFactory and Car interfaces, not their actual implementation, which is the main objective of this exercise. The
implementation class instances run elsewhere on the network and are seamlessly accessed through RMI. Listing 10-27
shows the source code for CarSales.java.

Listing 10-27: CarSales.java.

//
// CarSales.java
//
// (C) 1996 Wim De Munck mailto: wimdm@dm-mediaware.be
//
// This code is not to be distributed without
// explicit confirmation by the auhor.
//
import java.awt.*;
import java.rmi.Naming;
import java.net.MalformedURLException;
import java.rmi.NotBoundException;
import java.net.UnknownHostException;
/**
* CarSales-class connecting to a Remote Object
* registry.
* The Carsales instance allows simple order and selling
* of cars.
*/
public class CarSales extends Frame {
 TextArea ta = new TextArea("Application started");
 Button quitB = new Button ("Quit"), orderB = new Button ("Order Car");
 Button sellB = new Button ("Sell");
 Button wreckB = new Button ("Wreck");
 Choice brandCH = new Choice (), allCarsCH = new Choice();
 TextField modelTF = new TextField(10), colorTF = new TextField(10);
 TextField buyerTF = new TextField(10);
 CarFactory carFactory[];
 Car cars[] = null;
 /**
 * Construct the CarSales GUI
 */

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

 public CarSales () {
 super ("BEST CARS IN THE WORLD");
 // Setup the User Interface
 Panel northPan = new Panel ();
 northPan.setLayout (new BorderLayout ());
 northPan.add ("North",
 new Label ("Car Ordering: Select brand and model", Label.LEFT));
 northPan.setLayout (new BorderLayout());
 Panel orderPanel = new Panel ();
 //orderPanel.setLayout (new FlowLayout (FlowLayout.LEFT));
 orderPanel.setLayout (new GridLayout (1,7));
 orderPanel.add (new Label ("Brand:", Label.RIGHT));
 orderPanel.add (brandCH);
 orderPanel.add (new Label ("Model:", Label.RIGHT));
 orderPanel.add (modelTF);
 orderPanel.add (new Label ("Color:", Label.RIGHT));
 orderPanel.add (colorTF);
 orderPanel.add (orderB);
 Panel sellPanel = new Panel ();
 //sellPanel.setLayout (new FlowLayout (FlowLayout.LEFT));
 sellPanel.setLayout (new GridLayout (1,7));
 sellPanel.add (new Label ("All Cars:", Label.RIGHT));
 sellPanel.add (allCarsCH);
 sellPanel.add (new Label ("Buyer:", Label.RIGHT));
 sellPanel.add (buyerTF);
 sellPanel.add (new Label (""));
 sellPanel.add (new Label("Actions:", Label.RIGHT));
 Panel buttonPan = new Panel ();
 buttonPan.setLayout (new GridLayout (1, 2));
 buttonPan.add (sellB);
 buttonPan.add (wreckB);
 sellPanel.add (buttonPan);
 Panel northCenterPanel = new Panel ();
 northCenterPanel.setLayout (new GridLayout (2, 1));
 northCenterPanel.add (orderPanel);
 northCenterPanel.add (sellPanel);
 northPan.add ("Center", northCenterPanel);
 northPan.add ("South", new Label ("RMI/SQL log:", Label.CENTER));
 add("North", northPan);
 add("Center", ta);
 add("South", quitB);
 // In a real application there would be a remote object
 // giving us an array or enumeration with all brands.
 // In this example we do it hard coded.
 String carBrands[] = { "audi", "bmw", "vw" };
 carFactory = new CarFactory [carBrands.length];
 for (int ndx=0; ndx< carBrands.length; ndx ++) {
 try {
 brandCH.addItem (carBrands[ndx]);
 carFactory[ndx] = (CarFactory)
 (java.rmi.Naming.lookup ("rmi://serverhost/CarFactory." +
 carBrands[ndx]));
 appendTA(carBrands[ndx] + ": " + carFactory[ndx]);}
 catch (java.rmi.RemoteException ex) {
 appendTA("Constructor() RemoteException: " + ex.getMessage());}
 catch (java.rmi.NotBoundException ex) {
 appendTA("Constructor() NotBoundException: " +
 ex.getMessage());}
 catch (java.net.MalformedURLException ex) {

 appendTA ("Constructor() MalformedURLException: "+
 ex.getMessage());
 }
 } // end for carBrands[ndx]
 try {
 appendTA("");
 appendTA("Creating Cars:");
 updateAllCarsChoice () ;
 //Car nr1 = audiFact.createCar("A6", "black");}
 catch (Exception ex) {
 appendTA("Constructor() Exception: " + ex.getMessage());
 ex.printStackTrace();
 }
 pack();
 setVisible (true); // JDK1.1 replaced deprecated show()
 }
 private void updateAllCarsChoice () {
 int ndx = brandCH.getSelectedIndex();
 int count = 0;
 allCarsCH.removeAll();
 try {
 cars = carFactory[ndx].getAll();
 for (int i=0 ; i < cars.length; i++) {
 allCarsCH.addItem ("" + cars[i].getSerialNr() + " " +
 cars[i].getModel() + "," + cars[i].getColor());
 count++;
 }
 }
 catch (Exception ex) {
 appendTA ("updateAllCarChoice() Exception: " + ex.getMessage());
 }
 if (count > 0) {
 allCarsCH.setEnabled (true);
 allCarsCH.select(0);
 try {
 buyerTF.setText (cars[0].getOwner());
 colorTF.setText (cars[0].getColor());
 modelTF.setText (cars[0].getModel());
 }
 catch (Exception ex) {
 appendTA ("updateAllCarChoice() Exception: " + ex.getMessage());
 }
 }
 else {
 allCarsCH.setEnabled (false);
 allCarsCH.addItem ("No Cars Available");
 }
 appendTA ("Added " + count + " cars to allCarsCH for " + brandCH.
getSelectedItem());
 }
private void appendTA (String text) {
 ta.setText(ta.getText() + "\n" + text.toString());
 }
private void appendTA (Car car) {
 try {
 ta.setText(ta.getText() + "\n" + car.getObjectString()); }
catch (java.rmi.RemoteException ex) {
 ta.setText ("RemoteException: " + ex.getMessage());

 ex.printStackTrace();
 }
 }
 // JDK1.02 event-model
 public boolean action (Event evt, Object arg) {
 try {
 if (evt.target == quitB) {
 setVisible (false); // JDK1.1's setVisible() replaced
deprecated
 hide()
 dispose();
 System.exit(0);
 return true;
 }
 else if (evt.target == orderB) {
 int factIndex = brandCH.getSelectedIndex();
 carFactory[factIndex].createCar (modelTF.getText(),
 colorTF.getText());
 updateAllCarsChoice () ;
 }
 else if (evt.target == sellB) {
 int carIndex = allCarsCH.getSelectedIndex();
 cars[carIndex].sellTo (buyerTF.getText());
 appendTA ("sold car: " + cars[carIndex].getSerialNr() + "
to " +
 buyerTF.getText());
 }
 else if (evt.target == wreckB) {
 int carIndex = allCarsCH.getSelectedIndex();
 int factIndex = brandCH.getSelectedIndex();
 appendTA ("wrecked car: " + cars[carIndex].getSerialNr());
 carFactory[factIndex].deleteCar (cars[carIndex]);
 updateAllCarsChoice () ;
 }
 else if (evt.target == brandCH) {
 colorTF.setText ("");
 modelTF.setText ("");
 updateAllCarsChoice () ;
 }
 else if (evt.target == allCarsCH) {
 int carIndex = allCarsCH.getSelectedIndex();
 colorTF.setText (cars[carIndex].getColor());
 modelTF.setText (cars[carIndex].getModel());
 buyerTF.setText (cars[carIndex].getOwner());
 }
 }
 catch (java.rmi.RemoteException ex) {
 appendTA ("action() RemoteException: " + ex.getMessage()); }
 catch (java.sql.SQLException ex) {
 appendTA ("action() SQLException: " + ex.getMessage());
 }
 return true;
 }
 public boolean handleEvent (Event evt) { // deprecated by processEvent()
 if (evt.id == Event.WINDOW_DESTROY) {
 setVisible (false); // JDK1.1's setVisible() replaced deprecated hide()
 dispose();
 System.exit(0);
 return true;

 }
else {
 return super.handleEvent (evt);
 }
}

public static void main (String args[]) {
// Create GUI-object
CarSales cs = new CarSales();
 }
}

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Previous Table of Contents Next

CarSupplierServer.java

The CarSupplierServer class is the RMI server class. It creates three instances of CarFactory and binds them to the RMI
registry. A simple string names the bindings to allow clients to perform lookups in the registry. Listing 10-28 shows the
source code for CarSupplierServezr.java.

Listing 10-28: CarSupplierServer.java.

//
// CarSupplierServer.java
//
// (C) 1996 Wim De Munck mailto: wimdm@dm-mediaware.be
//
import java.rmi.Naming;
class CarSupplierServer {
 public static void main (String args[]) {
 // Install a SecurityManager for this server
 System.setSecurityManager(new java.rmi.RMISecurityManager());
 // create and register all CarFactories
 System.out.println ("Creating Car Factories");
 CarFactoryImpl audi, bmw, vw ;
 try {
 audi = new CarFactoryImpl("Audi");
 bmw = new CarFactoryImpl("BMW");
 vw = new CarFactoryImpl("Volkswagen");
 } catch (Exception ex) {
 ex.printStackTrace();
 return;
 }
 System.out.println ("Registring Car Factories");
 try {
 Naming.bind("CarFactory.audi", audi);
 Naming.bind("CarFactory.bmw", bmw);
 Naming.bind("CarFactory.vw", vw);
 } catch (java.net.MalformedURLException ex) {
 ex.printStackTrace();
 } catch (java.rmi.AlreadyBoundException ex) {
 ex.printStackTrace();
 } catch (java.rmi.RemoteException ex) {
 ex.printStackTrace();
 }
 }
}

RMI, as defined and implemented by JavaSoft, Inc., is HTTP-proxy aware. The networking layer of RMI provides

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

server- and client-side transparent support for HTTP tunneling that allows applets to communicate with remote methods
and remote objects through WWW proxy servers. A final note for those who want to run RMI on a stand-alone machine:
A TCP/IP stack must be running on the machine to let RMI clients and servers communicate.

Summary

This chapter provided examples of JDBC in the form of Java applets or stand-alone applications. Each example covered
a specific topic discussed in earlier chapters. The source code of all the examples is on the accompanying CD-ROM.

Examples discussed in this chapter include:

• A simple ISQL client
• Handling BLOBS from the command line
• A Java Automatic Teller Machine
• Fly with JDBC Airlines
• A graphical database surfer
• An advanced example using Remote Method Invocation

Previous Table of Contents Next

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Table of Contents

Part IV
Quick Reference and Appendixes

Quick Reference: JDBC API

Appendix A: JDBC Products and Drivers

Appendix B: Links for Additional Information

Appendix C: Frequently Asked Questions

Appendix D: What’s on the CD

Part IV includes the Quick Reference, which covers the JDBC 1.2 API of JavaSoft, and valuable appendixes, which
include answers to frequently asked questions and references for additional information about SQL and DBMSs, Objects
and DBMSs, and JDBC products and drivers. The CD-ROM contains the source code for all examples, JDBC products,
and the common Java utilities such as the JavaSoft, Inc., JDK. See Appendix D, “What’s on the CD-ROM,” for a
detailed list of CD-ROM contents.

Quick Reference

JDBC API: package java.sql

The definitions for interfaces, classes, and methods are based on the Javadoc-generated API specification of JavaSoft.
This section covers the JDBC 1.2 API of JavaSoft.

Interface java.sql.CallableStatement

public interface CallableStatement

extends Object

extends PreparedStatement

CallableStatements are used to call SQL stored procedures in a standard way for all DBMSs. Escape syntax is used for
procedures that return a result parameter and those that do not return a parameter. If the procedure returns a result, the
result parameter must be registered as an OUT parameter.

The set methods inherited from PreparedStatement are used to set IN parameter values. The type of all OUT parameters

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

must be registered prior to executing the stored procedure. Their values are retrieved via the get methods provided here.

A Callable statement may return a ResultSet or multiple ResultSets. Multiple ResultSets are handled using methods
inherited from Statement. The OUT parameters must always be retrieved after processing ResultSets and update counts,
if any.

{?= call <PROCEDURE-NAME>[<ARG1>,<ARG2> , ...]}
{call <PROCEDURE-NAME>[<ARG1>,<ARG2> , ...]}

See also: prepareCall, ResultSet

Methods:

GETBIGDECIMAL
public abstract BigDecimal getBigDecimal(int parameterIndex, int scale) throws SQLException

Get the value of an OUT parameter of type SQL NUMERIC as a java.math.BigDecimal object.

Parameters: parameterIndex — the parameter index begins at 1.

scale — a positive value representing the decimal precision.

Returns: the OUT parameter value; null if its value is SQL NULL

GETBOOLEAN
public abstract boolean getBoolean(int parameterIndex) throws SQLException

Get the value of an OUT parameter of type SQL BIT as a Java boolean.

Parameters: parameterIndex — the parameter index begins at 1.

Returns: the OUT parameter value; false if the value is SQL NULL

GETBYTE
public abstract byte getByte(int parameterIndex) throws SQLException

Get the value of an OUT parameter of type SQL TINYINT as a Java byte.

Parameters: parameterIndex — the parameter index begins at 1.

Returns: the OUT parameter value; 0 if the value is SQL NULL

GETBYTES
public abstract byte[] getBytes(int parameterIndex) throws SQLException

Get the value of an OUT parameter of type SQL BINARY or VARBINARY as a Java byte[].

Parameters: parameterIndex — the parameter index begins at 1.

Returns: the OUT parameter value; null if the value is SQL NULL

GETDATE
public abstract Date getDate(int parameterIndex) throws SQLException

Get the value of an OUT parameter of type SQL DATE as a java.sql.Date object.

Parameters: parameterIndex — the parameter index begins at 1.

Returns: the OUT parameter value; null if the value is SQL NULL

GETDOUBLE
public abstract double getDouble(int parameterIndex) throws SQLException

Get the value of an OUT parameter of type SQL DOUBLE as a Java double.

Parameters: parameterIndex — the parameter index begins at 1.

Returns: the OUT parameter value; 0 if the value is SQL NULL

GETFLOAT
public abstract float getFloat(int parameterIndex) throws SQLException

Get the value of an OUT parameter of type SQL FLOAT as a Java float.

Parameters: parameterIndex — the parameter index begins at 1.

Returns: the OUT parameter value; 0 if the value is SQL NULL

GETINT
public abstract int getInt(int parameterIndex) throws SQLException

Get the value of an OUT parameter of type SQL INTEGER as a Java int.

Parameters: parameterIndex — the parameter index begins at 1.

Returns: the OUT parameter value; 0 if the value is SQL NULL

GETLONG
public abstract long getLong(int parameterIndex) throws SQLException

Get the value of an OUT parameter of type SQL BIGINT as a Java long.

Parameters: parameterIndex — the parameter index begins at 1.

Returns: the OUT parameter value; 0 if the value is SQL NULL

GETOBJECT
public abstract Object getObject(int parameterIndex) throws SQLException

Get the value of an OUT parameter as a Java object.

The object type corresponds to the SQL type that was registered for this parameter using registerOutParameter().

Parameters: parameterIndex — the parameter index begins at 1.

Returns: a java.lang.Object containing the OUT parameter value.

See also: Types

GETSHORT
public abstract short getShort(int parameterIndex) throws SQLException

Get the value of an OUT parameter of type SQL SMALLINT as a Java short.

Parameters: parameterIndex — the parameter index begins at 1.

Returns: the OUT parameter value; 0 if the value is SQL NULL

GETSTRING
public abstract String getString(int parameterIndex) throws SQLException

Get the value of an OUT parameter of type SQL CHAR, VARCHAR, or LONGVARCHAR as a Java String.

Parameters: parameterIndex — the parameter index begins at 1.

Returns: the OUT parameter value; null if the value is SQL NULL

GETTIME
public abstract Time getTime(int parameterIndex) throws SQLException

Get the value of an OUT parameter of type SQL TIME as a java.sql.Time object.

Parameters: parameterIndex — the parameter index begins at 1.

Returns: the OUT parameter value; null if the value is SQL NULL

GETTIMESTAMP
public abstract Timestamp getTimestamp(int parameterIndex) throws SQLException

Get the value of an OUT parameter of type SQL TIMESTAMP as a java.sql.Timestamp object.

Parameters: parameterIndex — the parameter index begins at 1.

Returns: the OUT parameter value; null if the value is SQL NULL

REGISTEROUTPARAMETER
public abstract void registerOutParameter(int parameterIndex, int sqlType) throws SQLException

The registerOutParameter() method must be called before executing a stored procedure to register the java.sql.Type of
each OUT parameter. This type is used to retrieve the OUT parameter value with the appropriate getXXX() method.

Parameters: parameterIndex — the parameter index begins at 1.

sqlType — the SQL type code defined by java.sql.Types

See also: Type

REGISTEROUTPARAMETER
public abstract void registerOutParameter(int parameterIndex, int sqlType, int scale) throws SQLException

This registerOutParameter() method is used for registering Numeric or Decimal OUT parameters.

Parameters: parameterIndex — the parameter index begins at 1.

sqlType — java.sql.Type.NUMERIC or java.sql.Type.DECIMAL

scale — a positive value representing the desired number of decimal digits

See also: Numeric, Type

WASNULL
public abstract boolean wasNull() throws SQLException

This method reports whether the last value read was a SQL NULL. A getXXX() must be invoked first.

Returns: true if the last parameter read was SQL NULL

Interface java.sql.Connection

public interface Connection

extends Object

A Connection is a session in a specific database engine. SQL statements and their results are executed within the context
of such a Connection.

Information such as database tables, stored procedures, and other database objects may be obtained from a Connection
with the getMetaData methods.

All changes are committed after the execution of a statement. This is the default behavior. If autocommit has been
disabled, an explicit commit must be done or database changes will not be effective.

See also: getConnection, Statement, ResultSet, DatabaseMetaData

Variables:

TRANSACTION_NONE

public final static int TRANSACTION_NONE

This constant value is used to specify that transactions are not supported.

TRANSACTION_READ_COMMITTED
public final static int TRANSACTION_READ_COMMITTED

This constant value is used to specify that only reads on the current row are repeatable. Dirty reads are not allowed, but
nonrepeatable and phantom reads can occur.

TRANSACTION_READ_UNCOMMITTED
public final static int TRANSACTION_READ_UNCOMMITTED

This constant value is used to specify that dirty reads, nonrepeatable reads, and phantom reads can occur.

TRANSACTION_REPEATABLE_READ
public final static int TRANSACTION_REPEATABLE_READ

This constant value is used to specify that only phantom reads can occur.

TRANSACTION_SERIALIZABLE
public final static int TRANSACTION_SERIALIZABLE

This constant value is used to specify that dirty reads, nonrepeatable reads, and phantom reads cannot occur.

Methods:

CLEARWARNINGS
public abstract void clearWarnings() throws SQLException

Clears the chained warnings of a Connection. getWarnings() returns null until a new warning is reported.

CLOSE
public abstract void close() throws SQLException

The close method provides an immediate release for a Connection. All its resources are released upon invocation,
including resources maintained by the DBMS and the JDBC driver. Note that a Connection is automatically closed when
it is garbage collected.

COMMIT
public abstract void commit() throws SQLException

This method is used to commit transactions. All changes made since the previous commit() or rollback() are made
permanent, and any database locks currently held by the Connection are released. Note that all PreparedStatements,
CallableStatements, and ResultSets are implicitly closed when a Connection is committed.

See also: setAutoClose, setAutoCommit

CREATESTATEMENT
public abstract Statement createStatement() throws SQLException

This method creates a Statement object used to execute SQL statements without parameters. Unlike PreparedStatement,
this method is used for Statements that are executed only once.

Returns: a new Statement object

GETAUTOCLOSE
public abstract boolean getAutoClose() throws SQLException

Checks whether the Connection’s state is autoclose.

Returns: Current state of autoclose mode

See also: setAutoClose

GETAUTOCOMMIT
public abstract boolean getAutoCommit() throws SQLException

Checks whether the Connection’s state is autocommit.

Returns: Current state of autocommit mode

See also: setAutoCommit

GETCATALOG
public abstract String getCatalog() throws SQLException

If catalogs are supported, this method returns the Connection’s current catalog name.

Returns: the current catalog name or null

GETMETADATA
public abstract DatabaseMetaData getMetaData() throws SQLException

The DatabaseMetaData object returned by this method may be used to get information from the database engine. Such
information includes a description of tables, stored procedures, keys and indexes, the supported SQL grammar, and so
forth. Refer to the DatabaseMetaData interface for more detail.

Returns: a DatabaseMetaData object

GETTRANSACTIONISOLATION
public abstract int getTransactionIsolation() throws SQLException

Return the current transaction isolation mode. The different values are those listed as TRANSACTION_XXX static
variables.

Returns: the current transaction mode value

GETWARNINGS
public abstract SQLWarning getWarnings() throws SQLException

Warnings issued by calls on a Connection are chained together. This method returns the first warning that is reported as
a SQLWarning.

Returns: the first SQLWarning or null

ISCLOSED
public abstract boolean isClosed() throws SQLException

Checks whether a connection has been closed.

Returns: true if the connection is closed; false if it’s still open

ISREADONLY
public abstract boolean isReadOnly() throws SQLException

Checks whether the Connection is in read-only mode.

Returns: true if Connection is read-only

NATIVESQL
public abstract String nativeSQL(String sql) throws SQLException

Under some circumstances specific JDBC drivers may translate the SQL statements into a database’s native SQL
grammar prior to sending them. This method is useful to obtain the native form of the statement that the driver would
have sent.

Parameters: sql — a SQL statement. Note that it may contain ‘?’ parameter placeholders.

Returns: the native form of the statement

PREPARECALL
public abstract CallableStatement prepareCall(String sql) throws SQLException

CallableStatements are used for stored procedure call statements. This method creates such an object that can be used
later with appropriate methods to provide IN and OUT parameters to the stored procedure.

Parameters: sql — a SQL statement. Note that it may contain ‘?’ parameter placeholders.

Returns: a new CallableStatement object containing the precompiled SQL statement

PREPARESTATEMENT
public abstract PreparedStatement prepareStatement(String sql) throws SQLException

This method returns a PreparedStatement object. Such objects are useful when a SQL statement must be executed
multiple times. The SQL statement is precompiled before it actually receives parameters and is executed. If supported by
the driver and by the DBMS, parsing and optimizations are only done once during precompilation.

Parameters: sql — a SQL statement. Note that it is normally used with ‘?’ IN parameter placeholders.

Returns: a new PreparedStatement object containing the precompiled statement

ROLLBACK
public abstract void rollback() throws SQLException

Unlike commit(), rollback() cancels all changes made since the previous commit() or rollback() invocation and releases
any database locks currently held by the Connection. This method is used to abort transactions. Note that a Connection’s
PreparedStatements, CallableStatements, and ResultSets are implicitly closed when it is rollbacked.

See also: setAutoClose, setAutoCommit

SETAUTOCLOSE
public abstract void setAutoClose(boolean autoClose) throws SQLException

When autoclose is disabled, JDBC attempts to keep all Statements and ResultSets open across commits and rollbacks.

Parameters: autoClose — true enables autoclose, false disables autoclose.

See also: supportsOpenCursorsAcrossCommit, supportsOpenCursorsAcrossRollback,
supportsOpenStatementsAcrossCommit, supportsOpenStatementsAcrossRollback

SETAUTOCOMMIT
public abstract void setAutoCommit(boolean autoCommit) throws SQLException

SQL statements are executed and committed as individual transactions if a Connection is in autocommit mode. If not in
autocommit mode, the SQL statements are grouped into transactions that are terminated by either commit() or rollback().
By default, new connections are in autocommit mode. In autocommit mode, a commit always occurs after all results and
output parameter values for a specific statement have been retrieved.

Parameters: autoCommit — true enables autocommit; false disables it.

SETCATALOG
public abstract void setCatalog(String catalog) throws SQLException

If the database supports catalogs, this method selects a specific catalog. The method has no effect if catalogs are not
supported.

SETREADONLY
public abstract void setReadOnly(boolean readOnly) throws SQLException

Connections may be set in read-only mode. In this case no database updates are allowed and performance is often
improved. Note that this method cannot be called while in the middle of a transaction.

Parameters: readOnly — true enables read-only mode; false disables read-only mode.

SETTRANSACTIONISOLATION
public abstract void setTransactionIsolation(int level) throws SQLException

This method is used to change the transaction isolation level using the TRANSACTION_XXX static variables defined in
the beginning of this section. Note that it cannot be called while in the middle of a transaction.

Parameters: level — a TRANSACTION_XXX isolation value with the exception of TRANSACTION_NONE

See also: supportsTransactionIsolationLevel

Interface java.sql.DatabaseMetaData

public interface DatabaseMetaData

extends Object

The DatabaseMetaData class provides methods that return information about the database.

A part of its methods return ResultSets. Normal ResultSet methods such as getString() and getInt() must be used to
retrieve the data from these ResultSets. A SQLException is thrown if a given form of metadata is not available.

The methods that take String pattern arguments return information using these patterns. Within a pattern String, “%”
means match any substring of 0 or more characters, and “_” means match any one character. The various methods that
use pattern only return metadata entries matching the search pattern. A search criterion is suppressed if its pattern is set
to null.

If a driver does not support a metadata method, an exception is thrown. If such a method normally returns a ResultSet, a
ResultSet (which may be empty) is returned or a SQLException is thrown.

Variables:

BESTROWNOTPSEUDO
public final static int bestRowNotPseudo

BEST ROW PSEUDO_COLUMN: It is NOT a pseudocolumn.

BESTROWPSEUDO
public final static int bestRowPseudo

BEST ROW PSEUDO_COLUMN: It is a pseudocolumn.

BESTROWSESSION
public final static int bestRowSession

BEST ROW SCOPE: It is valid for the remainder of the current session.

BESTROWTEMPORARY
public final static int bestRowTemporary

BEST ROW SCOPE: Very temporary, while using row

BESTROWTRANSACTION
public final static int bestRowTransaction

BEST ROW SCOPE: It is valid for the remainder of current transaction.

BESTROWUNKNOWN
public final static int bestRowUnknown

BEST ROW PSEUDO_COLUMN: It may or may not be a pseudocolumn.

COLUMNNONULLS
public final static int columnNoNulls

COLUMN NULLABLE: It might not allow NULL values.

COLUMNNULLABLE
public final static int columnNullable

COLUMN NULLABLE: It definitely allows NULL values.

COLUMNNULLABLEUNKNOWN
public final static int columnNullableUnknown

COLUMN NULLABLE: Its nullability is unknown.

IMPORTEDKEYCASCADE
public final static int importedKeyCascade

IMPORT KEY UPDATE_RULE and DELETE_RULE: For update, change imported key to agree with primary key
update. For delete, delete rows that import a deleted key.

IMPORTEDKEYINITIALLYDEFERRED
public final static int importedKeyInitiallyDeferred

IMPORT KEY DEFERRABILITY: See SQL92 for more information.

IMPORTEDKEYINITIALLYIMMEDIATE
public final static int importedKeyInitiallyImmediate

IMPORT KEY DEFERRABILITY: See SQL92 for more information.

IMPORTEDKEYNOACTION
public final static int importedKeyNoAction

IMPORT KEY UPDATE_RULE and DELETE_RULE: Do not allow update or delete of primary key if it has been
imported.

IMPORTEDKEYNOTDEFERRABLE
public final static int importedKeyNotDeferrable

IMPORT KEY DEFERRABILITY: See SQL92 for more information.

IMPORTEDKEYRESTRICT
public final static int importedKeyRestrict

IMPORT KEY UPDATE_RULE and DELETE_RULE: Do not allow update or delete of primary key if it has been
imported.

IMPORTEDKEYSETDEFAULT
public final static int importedKeySetDefault

IMPORT KEY UPDATE_RULE and DELETE_RULE: Change imported key to default values if its primary key has
been updated or deleted.

IMPORTEDKEYSETNULL
public final static int importedKeySetNull

IMPORT KEY UPDATE_RULE and DELETE_RULE: Change imported key to NULL if its primary key has been
updated or deleted.

PROCEDURECOLUMNUNKNOWN
public final static int procedureColumnUnknown

COLUMN_TYPE: Unknown type for a procedure’s parameter.

PROCEDURECOLUMNIN
public final static int procedureColumnIn

COLUMN_TYPE: It is an IN parameter.

PROCEDURECOLUMNINOUT
public final static int procedureColumnInOut

COLUMN_TYPE: It is an INOUT parameter.

PROCEDURECOLUMNOUT
public final static int procedureColumnOut

COLUMN_TYPE: It is an OUT parameter.

PROCEDURECOLUMNRETURN
public final static int procedureColumnReturn

COLUMN_TYPE: The procedure returns a value.

PROCEDURECOLUMNRESULT
public final static int procedureColumnResult

COLUMN_TYPE: Result column is a ResultSet.

PROCEDURENORESULT
public final static int procedureNoResult

PROCEDURE_TYPE: Procedure does not return a result.

PROCEDURENONULLS
public final static int procedureNoNulls

TYPE NULLABLE: The procedure does not allow NULL values.

PROCEDURENULLABLE
public final static int procedureNullable

TYPE NULLABLE: It allows NULL values.

PROCEDURENULLABLEUNKNOWN
public final static int procedureNullableUnknown

TYPE NULLABLE: Its nullability is unknown.

PROCEDURERESULTUNKNOWN
public final static int procedureResultUnknown

PROCEDURE_TYPE: It may return a result.

PROCEDURERETURNSRESULT
public final static int procedureReturnsResult

PROCEDURE_TYPE: It returns a result.

TABLEINDEXCLUSTERED
public final static short tableIndexClustered

INDEX INFO TYPE: This identifies a clustered index.

TABLEINDEXHASHED
public final static short tableIndexHashed

INDEX INFO TYPE: This identifies a hashed index.

TABLEINDEXOTHER
public final static short tableIndexOther

INDEX INFO TYPE: This identifies some other form of index

TABLEINDEXSTATISTIC
public final static short tableIndexStatistic

INDEX INFO TYPE: This identifies table statistics that are returned in conjunction with a table’s index descriptions.

TYPENONULLS
public final static int typeNoNulls

TYPE NULLABLE: It does not allow NULL values.

TYPENULLABLE
public final static int typeNullable

TYPE NULLABLE: It allows NULL values.

TYPENULLABLEUNKNOWN
public final static int typeNullableUnknown

TYPE NULLABLE: Its nullability is unknown.

TYPEPREDBASIC
public final static int typePredBasic

TYPE INFO SEARCHABLE: Supported except for WHERE . . . LIKE

TYPEPREDCHAR
public final static int typePredChar

TYPE INFO SEARCHABLE: Only supported with WHERE . . . LIKE

TYPEPREDNONE
public final static int typePredNone

TYPE INFO SEARCHABLE: No support

TYPESEARCHABLE
public final static int typeSearchable

TYPE INFO SEARCHABLE: Supported for all WHERE

VERSIONCOLUMNNOTPSEUDO
public final static int versionColumnNotPseudo

VERSION COLUMNS PSEUDO_COLUMN: It is NOT a pseudocolumn

VERSIONCOLUMNPSEUDO
public final static int versionColumnPseudo

VERSION COLUMNS PSEUDO_COLUMN: It is a pseudocolumn

VERSIONCOLUMNUNKNOWN
public final static int versionColumnUnknown

VERSION COLUMNS PSEUDO_COLUMN: It may or may not be a pseudocolumn

Methods:

ALLPROCEDURESARECALLABLE
public abstract boolean allProceduresAreCallable() throws SQLException

Checks whether the current user may call all the procedures returned by getProcedures.

Returns: true if so

ALLTABLESARESELECTABLE
public abstract boolean allTablesAreSelectable() throws SQLException

Checks whether all the tables returned by getTable may be SELECTed by the current user.

Returns: true if so

DATADEFINITIONCAUSESTRANSACTIONCOMMIT
public abstract boolean dataDefinitionCausesTransactionCommit() throws SQLException

Checks whether a data definition statement within a transaction forces the transaction to commit.

Returns: true if so

DATADEFINITIONIGNOREDINTRANSACTIONS
public abstract boolean dataDefinitionIgnoredInTransactions() throws SQLException

Checks whether a data definition statement within a transaction will be ignored.

Returns: true if so

DOESMAXROWSIZEINCLUDEBLOBS
public abstract boolean doesMaxRowSizeIncludeBlobs() throws SQLException

Checks whether getMaxRowSize() includes LONGVARCHAR and LONGVARBINARY blobs.

Returns: true if so

GETBESTROWIDENTIFIER
public abstract ResultSet getBestRowIdentifier(String catalog, String schema, String table, int scope, boolean
nullable) throws SQLException

Returns a set of column descriptions that uniquely identifies a row of a table. They are ordered by SCOPE.

The resultset has the following columns:

SCOPE short [rarr] actual scope of result is one of the following:
• bestRowTemporary — very temporary, while using row
• bestRowTransaction — valid for remainder of current transaction
• bestRowSession — valid for remainder of current session

COLUMN_NAME String [rarr] column name
DATA_TYPE short [rarr] SQL data type from java.sql.Types
TYPE_NAME String [rarr] Data source dependent type name
COLUMN_SIZE int [rarr] precision
BUFFER_LENGTH int [rarr] not used
DECIMAL_DIGITS short [rarr] scale
PSEUDO_COLUMN short [rarr] a pseudocolumn that can have one of these values:

• bestRowUnknown — may or may not be pseudocolumn
• bestRowNotPseudo — is NOT a pseudocolumn
• bestRowPseudo — is a pseudocolumn

Parameters: catalog — a catalog name; “” retrieves those without a catalog; null means do not use catalogs for the
selection criteria.

schema — a schema name; “” retrieves those without a schema

table — a table name

scope — the scope of interest; values are the same as SCOPE.

nullable — include columns that are nullable

Returns: a ResultSet; each row is a column description.

GETCATALOGS
public abstract ResultSet getCatalogs() throws SQLException

Get a table of catalog names available in this database. The results are ordered by catalog name. The catalog column is:

TABLE_CAT String [rarr] catalog name

Returns: a ResultSet containing one row per catalog name

GETCATALOGSEPARATOR
public abstract String getCatalogSeparator() throws SQLException

Get the separator between catalog and table name.

Returns: the catalog separator string

GETCATALOGTERM
public abstract String getCatalogTerm() throws SQLException

Get the term used for catalogs.

Returns: the vendor term for catalog

GETCOLUMNS
public abstract ResultSet getColumns(String catalog, String schemaPattern, String tableNamePattern, String
columnNamePattern) throws SQLException

Return a ResultSet containing a description of table columns matching the criteria available in a catalog. The ResultSet
is ordered TABLE_SCHEM, TABLE_NAME, and ORDINAL_POSITION.

The ResultSet has the following columns:

TABLE_CAT String [rarr] table catalog (may be null)

TABLE_SCHEM String [rarr] table schema (may be null)
TABLE_NAME String [rarr] table name
COLUMN_NAME String [rarr] column name
DATA_TYPE short [rarr] SQL type from java.sql.Types
TYPE_NAME String [rarr] Data source dependent-type name
COLUMN_SIZE int [rarr] column size; (maximum number of characters for CHAR or DATE type or
precision for NUMERIC or DECIMAL types)
BUFFER_LENGTH is not used.
DECIMAL_DIGITS int [rarr] the number of fractional digits
NUM_PREC_RADIX int [rarr] radix (typically either 10 or 2)
NULLABLE int [rarr] has one of these values:

columnNoNulls — might not allow NULL values
columnNullable — definitely allows NULL values
columnNullableUnknown — nullability unknown

REMARKS String [rarr] comment describing column (may be null)
COLUMN_DEF String [rarr] default value (may be null)
SQL_DATA_TYPE int [rarr] unused
SQL_DATETIME_SUB int [rarr] unused
CHAR_OCTET_LENGTH int [rarr] the length of the column in bytes
ORDINAL_POSITION int [rarr] index of column in table (starting at 1)
IS_NULLABLE String [rarr] “NO” if NULL values are not allowed; “YES” if the column might allow NULL
values; or an empty string if this attribute is unknown

Parameters: catalog — a catalog name; “” retrieves those without a catalog; null means do not use catalogs for the
selection criteria.

schemaPattern — a schema name pattern; “” retrieves those without a schema.

tableNamePattern — a table name pattern

columnNamePattern — a column name pattern

Returns: a ResultSet; each row is a column description.

See also: getSearchStringEscape

GETCOLUMNPRIVILEGES
public abstract ResultSet getColumnPrivileges(String catalog, String schema, String table, String
columnNamePattern) throws SQLException

Return a description of the access rights for the columns of a table. COLUMN_NAME and PRIVILEGE order the
privileges.

TABLE_CAT String [rarr] table catalog (may be null)
TABLE_SCHEM String [rarr] table schema (may be null)
TABLE_NAME String [rarr] table name
COLUMN_NAME String [rarr] column name
GRANTOR [rarr] grantor of access (may be null)
GRANTEE String [rarr] grantee of access
PRIVILEGE String [rarr] name of access (SELECT, INSERT, UPDATE, REFRENCES, . . .)
IS_GRANTABLE String [rarr] if grantee is permitted to grant to others, the column contains “YES”; “NO” if
it is not permitted, or null if unknown

Parameters: catalog — a catalog name; “” retrieves those without a catalog; null means do not use catalogs for the

selection criteria.

schema — a schema name; “” retrieves those without a schema.

table — a table name

columnNamePattern — a column name pattern

Returns: a ResultSet; each row is a description of a column privilege.

See also: getSearchStringEscape

GETCROSSREFERENCE
public abstract ResultSet getCrossReference(String primaryCatalog, String primarySchema, String
primaryTable, String foreignCatalog, String foreignSchema, String foreignTable) throws SQLException

Describe the foreign keys of a table and the primary keys of another table they refer to. They are ordered by
FKTABLE_CAT, FKTABLE_SCHEM, FKTABLE_NAME, and KEY_SEQ.

The ResultSet contains foreign key column descriptions. It contains the following columns:

PKTABLE_CAT String [rarr] primary key table catalog (may be null)
PKTABLE_SCHEM String [rarr] primary key table schema (may be null)
PKTABLE_NAME String [rarr] primary key table name
PKCOLUMN_NAME String [rarr] primary key column name
FKTABLE_CAT String [rarr] foreign key table catalog (may be null) being exported (may be null)
FKTABLE_SCHEM String [rarr] foreign key table schema (may be null) being exported (may be null)
FKTABLE_NAME String [rarr] foreign key table name being exported
FKCOLUMN_NAME String [rarr] foreign key column name being exported
KEY_SEQ short [rarr] sequence number within foreign key
UPDATE_RULE short [rarr] What happens to foreign key when primary is updated:

importedKeyNoAction — do not allow update of primary key if it has been imported
importedKeyCascade — change imported key to agree with primary key update
importedKeyRestrict — do not allow update of primary key if it has been imported
importedKeySetDefault — change imported key to default values if its primary key has been updated
importedKeySetNull — change imported key to NULL if its primary key has been updated

DELETE_RULE short [rarr] What happens to the foreign key when primary is deleted.
importedKeyNoAction — do not allow delete of primary key if it has been imported
importedKeyCascade — delete rows that import a deleted key
importedKeyRestrict — do not allow delete of primary key if it has been imported
importedKeySetDefault — change imported key to default if its primary key has been deleted
importedKeySetNull — change imported key to NULL if its primary key has been deleted

FK_NAME String [rarr] foreign key identifier (may be null)
PK_NAME String [rarr] primary key identifier (may be null)
DEFERRABILITY short [rarr] can the evaluation of foreign key constraints be deferred until commit

importedKeyInitiallyDeferred — see SQL92 for definition
importedKeyInitiallyImmediate — see SQL92 for definition
importedKeyNotDeferrable — see SQL92 for definition

Parameters: primaryCatalog — a catalog name; “” retrieves those without a catalog; the catalog name criteria is
suppressed if null.

primarySchema — a schema name pattern; “” retrieves those without a schema.

primaryTable — the table name that exports the key

foreignCatalog — a catalog name; “” retrieves those without a catalog; the catalog name criteria is suppressed if null.

foreignSchema — a schema name pattern; “” retrieves those without a schema.

foreignTable — the table name that imports the key

Returns: a ResultSet; each row is a foreign key column description.

See also: getImportedKeys

GETDATABASEPRODUCTNAME
public abstract String getDatabaseProductName() throws SQLException

Get the name of the database product in use.

Returns: database product name

GETDATABASEPRODUCTVERSION
public abstract String getDatabaseProductVersion() throws SQLException

Get the version of the database product in use.

Returns: database version

GETDEFAULTTRANSACTIONISOLATION
public abstract int getDefaultTransactionIsolation() throws SQLException

Get the database’s default transaction isolation level. See the possible values in java.sql.Connection.

Returns: the default isolation level

See also: Connection

GETDRIVERNAME
public abstract String getDriverName() throws SQLException

Get the name of the JDBC driver in use.

Returns: JDBC driver name

GETDRIVERMAJORVERSION
public abstract int getDriverMajorVersion()

Get the JDBC driver’s major version number.

Returns: JDBC driver major version

GETDRIVERMINORVERSION
public abstract int getDriverMinorVersion()

Get the JDBC driver’s minor version number.

Returns: JDBC driver minor version number

GETDRIVERVERSION
public abstract String getDriverVersion() throws SQLException

Get the version of the JDBC driver in use.

Returns: JDBC driver version

GETEXPORTEDKEYS
public abstract ResultSet getExportedKeys(String catalog, String schema, String table) throws SQLException

Get a description of foreign key columns that reference a table’s primary key columns (the foreign keys exported by a
table). They are ordered by FKTABLE_CAT, FKTABLE_SCHEM, FKTABLE_NAME, and KEY_SEQ.

PKTABLE_CAT String [rarr] primary key table catalog (may be null)
PKTABLE_SCHEM String [rarr] primary key table schema (may be null)
PKTABLE_NAME String [rarr] primary key table name
PKCOLUMN_NAME String [rarr] primary key column name
FKTABLE_CAT String [rarr] foreign key table catalog (may be null) being exported (may be null)
FKTABLE_SCHEM String [rarr] foreign key table schema (may be null) being exported (may be null)
FKTABLE_NAME String [rarr] foreign key table name being exported
FKCOLUMN_NAME String [rarr] foreign key column name being exported
KEY_SEQ short [rarr] sequence number within foreign key
UPDATE_RULE short [rarr] what happens to foreign key when primary is updated:

importedKeyNoAction — do not allow update of primary key if it has been imported
importedKeyCascade — change imported key to agree with primary key update
importedKeyRestrict — do not allow update of primary key if it has been imported
importedKeySetDefault — change imported key to default values if its primary key has been updated
importedKeySetNull — change imported key to NULL if its primary key has been updated

DELETE_RULE short [rarr] what happens to the foreign key when primary is deleted:
importedKeyNoAction — do not allow delete of primary key if it has been imported
importedKeyCascade — delete rows that import a deleted key
importedKeyRestrict — do not allow delete of primary key if it has been imported
importedKeySetDefault — change imported key to default if its primary key has been deleted
importedKeySetNull — change imported key to NULL if its primary key has been deleted

FK_NAME String [rarr] foreign key identifier (may be null)
PK_NAME String [rarr] primary key identifier (may be null)
DEFERRABILITY short [rarr] can the evaluation of foreign key constraints be deferred until commit

importedKeyInitiallyDeferred — see SQL92 for definition
importedKeyInitiallyImmediate — see SQL92 for definition
importedKeyNotDeferrable — see SQL92 for definition

Parameters: catalog — a catalog name; “” retrieves those without a catalog; a null means that the catalog name must be
suppressed from the selection criteria.

schema — a schema name pattern; “” retrieves those without a schema.

table — a table name

Returns: a ResultSet; each row is a foreign key column description.

See also: getImportedKeys

GETEXTRANAMECHARACTERS
public abstract String getExtraNameCharacters() throws SQLException

The database may allow special characters to be used in unquoted identifiers. This method returns a String containing
such characters.

Returns: the string containing the extra characters

GETIDENTIFIERQUOTESTRING
public abstract String getIdentifierQuoteString() throws SQLException

Get the string used to quote SQL identifiers.

Returns: the quoting string or a space character if the database does not support identifier quoting

GETIMPORTEDKEYS
public abstract ResultSet getImportedKeys(String catalog, String schema, String table) throws SQLException

Get a description of the primary key columns referenced by a table’s foreign key columns. They are ordered by
PKTABLE_CAT, PKTABLE_SCHEM, PKTABLE_NAME, and KEY_SEQ.

PKTABLE_CAT String [rarr] primary key table catalog being imported (may be null)
PKTABLE_SCHEM String [rarr] primary key table schema being imported (may be null)
PKTABLE_NAME String [rarr] primary key table name being imported
PKCOLUMN_NAME String [rarr] primary key column name being imported
FKTABLE_CAT String [rarr] foreign key table catalog (may be null)
FKTABLE_SCHEM String [rarr] foreign key table schema (may be null)
FKTABLE_NAME String [rarr] foreign key table name
FKCOLUMN_NAME String [rarr] foreign key column name
KEY_SEQ short [rarr] sequence number within foreign key
UPDATE_RULE short [rarr] What happens to foreign key when primary is updated:

importedKeyNoAction — do not allow update of primary key if it has been imported
importedKeyCascade — change imported key to agree with primary key update
importedKeyRestrict — do not allow update of primary key if it has been imported
importedKeySetDefault — change imported key to default values if its primary key has been updated
importedKeySetNull — change imported key to NULL if its primary key has been updated

DELETE_RULE short [rarr] What happens to the foreign key when primary is deleted
importedKeyNoAction — do not allow delete of primary key if it has been imported
importedKeyCascade — delete rows that import a deleted key
importedKeyRestrict — do not allow delete of primary key if it has been imported
importedKeySetDefault — change imported key to default if its primary key has been deleted
importedKeySetNull — change imported key to NULL if its primary key has been deleted

FK_NAME String [rarr] foreign key name (may be null)
PK_NAME String [rarr] primary key name (may be null)
DEFERRABILITY short [rarr] can the evaluation of foreign key constraints be deferred until commit:

importedKeyInitiallyDeferred — see SQL92 for definition
importedKeyInitiallyImmediate — see SQL92 for definition
importedKeyNotDeferrable — see SQL92 for definition

Parameters: catalog — a catalog name; “” retrieves those without a catalog; a null means that the catalog name must be
suppressed from the selection criteria.

schema — a schema name pattern; “” retrieves those without a schema.
table — a table name

Returns: a ResultSet; each row is a primary key column description.

See also: getExportedKeys

GETINDEXINFO
public abstract ResultSet getIndexInfo(String catalog, String schema, String table, boolean unique, boolean
approximate) throws SQLException

Get a description of a table’s indices and statistics. They are ordered by NON_UNIQUE, TYPE, INDEX_NAME, and
ORDINAL_POSITION.The ResultSet contains index column descriptions. It has the following columns:

TABLE_CAT String [rarr] table catalog (may be null)
TABLE_SCHEM String [rarr] table schema (may be null)
TABLE_NAME String [rarr] table name
NON_UNIQUE boolean [rarr] can index values be nonunique?; false when TYPE is tableIndexStatistic
INDEX_QUALIFIER String [rarr] index catalog (may be null); null when TYPE is tableIndexStatistic
INDEX_NAME String [rarr] index name; null when TYPE is tableIndexStatistic
TYPE short [rarr] index type; the possible values are:

tableIndexStatistic — this identifies table statistics that are returned in conjunction with a table’s index
descriptions.
tableIndexClustered — this is a clustered index.
tableIndexHashed — this is a hashed index.
tableIndexOther — this is another type of index.

ORDINAL_POSITION short [rarr] column sequence number within index; zero if TYPE is
tableIndexStatistic
COLUMN_NAME String [rarr] column name; null if TYPE is tableIndexStatistic
ASC_OR_DESC String [rarr] column sort sequence — “A” [rarr] ascending, “D” [rarr] descending; may be
null if sort sequence is not supported; null if TYPE is tableIndexStatistic
CARDINALITY int [rarr] if TYPE is tableIndexStatisic then this is the number of rows in the table; otherwise,
it is the number of unique values in the index.
PAGES int [rarr] if TYPE is tableIndexStatisic then this is the number of pages used for the table; otherwise, it
is the number of pages used for the current index.
FILTER_CONDITION String [rarr] filter condition, if any (may be null)

Parameters: catalog — a catalog name; “” retrieves those without a catalog; a null means that the catalog name must be
suppressed from the selection criteria.

schema — a schema name pattern; “” retrieves those without a schema.
table — a table name
unique — if true, returns only indices for unique values; if false, returns all indices
approximate — if true, result is allowed to reflect approximate or out of data values; if false, results must be
accurate.

Returns: a ResultSet; each row is an index column description.

GETMAXBINARYLITERALLENGTH
public abstract int getMaxBinaryLiteralLength() throws SQLException

Get the maximum number of hex characters allowed in an inline binary literal.

Returns: max literal length

GETMAXCHARLITERALLENGTH
public abstract int getMaxCharLiteralLength() throws SQLException

Get the maximum length for a character literal.

Returns: max literal length

GETMAXCOLUMNNAMELENGTH
public abstract int getMaxColumnNameLength() throws SQLException

Get the maximum length allowed for a column name.

Returns: max literal length

GETMAXCOLUMNSINGROUPBY
public abstract int getMaxColumnsInGroupBy() throws SQLException

Get the maximum number of columns allowed in a “GROUP BY” clause.

Returns: max number of columns

GETMAXCOLUMNSININDEX
public abstract int getMaxColumnsInIndex() throws SQLException

Get the maximum number of columns allowed in an index.

Returns: max columns

GETMAXCOLUMNSINORDERBY
public abstract int getMaxColumnsInOrderBy() throws SQLException

Get the maximum number of columns allowed in an “ORDER BY” clause.

Returns: max columns

GETMAXCOLUMNSINSELECT
public abstract int getMaxColumnsInSelect() throws SQLException

Get the maximum number of columns allowed in a “SELECT” list.

Returns: max columns

GETMAXCOLUMNSINTABLE
public abstract int getMaxColumnsInTable() throws SQLException

Get the maximum number of columns allowed in a table.

Returns: max columns

GETMAXCONNECTIONS
public abstract int getMaxConnections() throws SQLException

Get the maximum number of simultaneous active connections for this database.

Returns: max connections

GETMAXCURSORNAMELENGTH
public abstract int getMaxCursorNameLength() throws SQLException

Get the maximum cursor name length.

Returns: max cursor name length in bytes

GETMAXINDEXLENGTH
public abstract int getMaxIndexLength() throws SQLException

Get the maximum length of an index.

Returns: max index length in bytes

GETMAXPROCEDURENAMELENGTH
public abstract int getMaxProcedureNameLength() throws SQLException

Get the maximum length of a procedure name.

Returns: max name length in bytes

GETMAXCATALOGNAMELENGTH
public abstract int getMaxCatalogNameLength() throws SQLException

Get the maximum length of a catalog name.

Returns: max name length in bytes

GETMAXROWSIZE
public abstract int getMaxRowSize() throws SQLException

Get the maximum length of a single row.

Returns: max row size in bytes

GETMAXSCHEMANAMELENGTH
public abstract int getMaxSchemaNameLength() throws SQLException

Get the maximum length of a schema name.

Returns: max name length in bytes

GETMAXSTATEMENTLENGTH
public abstract int getMaxStatementLength() throws SQLException

Get the maximum length of a SQL statement.

Returns: max length in bytes

GETMAXSTATEMENTS
public abstract int getMaxStatements() throws SQLException

Get the maximum number of simultaneous active statements for this database.

Returns: the maximum

GETMAXTABLENAMELENGTH
public abstract int getMaxTableNameLength() throws SQLException

Get the maximum length of a table name.

Returns: max name length in bytes

GETMAXTABLESINSELECT
public abstract int getMaxTablesInSelect() throws SQLException

Get the maximum number of tables in a SELECT clause.

Returns: the maximum

GETMAXUSERNAMELENGTH
public abstract int getMaxUserNameLength() throws SQLException

Get the maximum length of a user name.

Returns: max name length in bytes

GETNUMERICFUNCTIONS
public abstract String getNumericFunctions() throws SQLException

Get a list of supported math functions.

Returns: the list; separator is a comma.

GETPRIMARYKEYS
public abstract ResultSet getPrimaryKeys(String catalog, String schema, String table) throws SQLException

Get a description of a table’s primary key columns. They are ordered by COLUMN_NAME.

The ResultSet contains column descriptions. It has these columns:

TABLE_CAT String [rarr] table catalog (may be null)
TABLE_SCHEM String [rarr] table schema (may be null)
TABLE_NAME String [rarr] table name
COLUMN_NAME String [rarr] column name
KEY_SEQ short [rarr] sequence number within primary key
PK_NAME String [rarr] primary key name (may be null)

Parameters: catalog — a catalog name; “” retrieves those without a catalog; a null means that the catalog name must be
suppressed from the selection criteria.

schema — a schema name pattern; “” retrieves those without a schema.

table — a table name

Returns: a ResultSet; each row is a primary key column description.

GETPROCEDURES
public abstract ResultSet getProcedures(String catalog, String schemaPattern, String procedureNamePattern)
throws SQLException

Get a description of stored procedures. They are ordered by PROCEDURE_SCHEM, and PROCEDURE_NAME.

The ResultSet contains procedure descriptions. It has these columns:

PROCEDURE_CAT String [rarr] procedure catalog (may be null)
PROCEDURE_SCHEM String [rarr] procedure schema (may be null)
PROCEDURE_NAME String [rarr] procedure name
RESERVED
RESERVED
RESERVED
REMARKS String [rarr] explanatory comment on the procedure
PROCEDURE_TYPE short [rarr] kind of procedure:

procedureResultUnknown — May return a result
procedureNoResult — Does not return a result
procedureReturnsResult — Returns a result

Parameters: catalog — a catalog name; “” retrieves those without a catalog; a null means that the catalog name must be
suppressed from the selection criteria.

schemaPattern — a schema name pattern; “” retrieves those without a schema.

procedureNamePattern — a procedure name pattern

Returns: a ResultSet; each row is a procedure description.

See also: getSearchStringEscape

GETPROCEDURECOLUMNS

public abstract ResultSet getProcedureColumns(String catalog, String schemaPattern, String
procedureNamePattern, String columnNamePattern) throws SQLException

Get a description of a catalog’s stored procedure parameters and result columns.

They are ordered by PROCEDURE_SCHEM and PROCEDURE_NAME.

If the procedure has a return value, its description is given first. The remaining descriptions refer to the procedure’s
parameters.

Each row in the ResultSet is a parameter description or column description with the following fields:

PROCEDURE_CAT String [rarr] procedure catalog (may be null)
PROCEDURE_SCHEM String [rarr] procedure schema (may be null)
PROCEDURE_NAME String [rarr] procedure name
COLUMN_NAME String [rarr] column/parameter name
COLUMN_TYPE Short [rarr] kind of column/parameter:

procedureColumnUnknown — nobody knows
procedureColumnIn — IN parameter
procedureColumnInOut — INOUT parameter
procedureColumnOut — OUT parameter
procedureColumnReturn — procedure return value
procedureColumnResult — result column in ResultSet

DATA_TYPE short [rarr] SQL type from java.sql.Types
TYPE_NAME String [rarr] SQL type name
PRECISION int [rarr] precision
LENGTH int [rarr] length in bytes of data
SCALE short [rarr] scale
RADIX short [rarr] radix
NULLABLE short [rarr] can it contain NULL?

procedureNoNulls — does not allow NULL values
procedureNullable — allows NULL values
procedureNullableUnknown — nullability unknown

REMARKS String [rarr] comment describing parameter/column

Parameters: catalog — a catalog name; “” retrieves those without a catalog; a null means that the catalog name must be
suppressed from the selection criteria.

schemaPattern — a schema name pattern; “” retrieves those without a schema.

procedureNamePattern — a procedure name pattern

columnNamePattern — a column name pattern

Returns: a ResultSet; each row is a stored procedure parameter or column description.

See also: getSearchStringEscape

GETPROCEDURETERM
public abstract String getProcedureTerm() throws SQLException

Get the database vendor’s preferred term for “procedure.”

Returns: the vendor term

GETSCHEMAS
public abstract ResultSet getSchemas() throws SQLException

Get the schema names available in the database in use. The results are ordered by TABLE_SCHEM. The ResultSet
contains one column, which is:

TABLE_SCHEM String [rarr] schema name

Returns: a ResultSet; each row has a single String column that is a schema name.

GETSCHEMATERM
public abstract String getSchemaTerm() throws SQLException

Get the database vendor’s preferred term for “schema.”

Returns: the vendor term

GETSEARCHSTRINGESCAPE
public abstract String getSearchStringEscape() throws SQLException

Get the string that can be used to escape wildcard characters such as “_” or “%” in the string pattern style catalog search
parameters.

The “_” character represents any single character.

The “%” character represents any sequence of zero or more characters.

Returns: the string used to escape wildcard characters

GETSTRINGFUNCTIONS
public abstract String getStringFunctions() throws SQLException

Get the list of string functions supported by the database in use.

Returns: the list, which is comma separated

GETSQLKEYWORDS
public abstract String getSQLKeywords() throws SQLException

Get a list of all SQL keywords that are not also SQL92 keywords supported by the database in use.

Returns: the list, comma separated

GETSYSTEMFUNCTIONS
public abstract String getSystemFunctions() throws SQLException

Get the list of system functions supported by the database in use.

Returns: the list, comma separated

GETTABLES
public abstract ResultSet getTables(String catalog, String schemaPattern, String tableNamePattern, String types
[]) throws SQLException

Return a list of user or system tables or views available in a catalog. The search criteria are catalog, schema, table name,
and table type. The results are ordered by TABLE_TYPE, TABLE_SCHEM, and TABLE_NAME.

The ResultSet has these columns:

TABLE_CAT String [rarr] table catalog (may be null)
TABLE_SCHEM String [rarr] table schema (may be null)
TABLE_NAME String [rarr] table name
TABLE_TYPE String [rarr] table type; possible types are “TABLE,” “VIEW,” “SYSTEM TABLE,”
“GLOBAL TEMPORARY,” “LOCAL TEMPORARY,” “ALIAS,” “SYNONYM”.
REMARKS String [rarr] explanatory comment on the table

Parameters: catalog — a catalog name; “” retrieves those without a catalog; a null means that the catalog name must be
suppressed from the selection criteria.

schemaPattern — a schema name pattern; “” retrieves those without a schema.

tableNamePattern — a table name pattern

types — a list of table types to include or null to return all types

Returns: a ResultSet; each row is a table description

See also: getSearchStringEscape, getTableTypes

GETTABLETYPES
public abstract ResultSet getTableTypes() throws SQLException

Get all the table types available in the current database. The results are ordered by table type. The table type is:

TABLE_TYPE String [rarr] table type; possible types are “TABLE,” “VIEW,” “SYSTEM TABLE,”
“GLOBAL TEMPORARY,” “LOCAL TEMPORARY,” “ALIAS,” “SYNONYM”

Returns: a ResultSet; each row contains a table type.

GETTABLEPRIVILEGES
public abstract ResultSet getTablePrivileges(String catalog, String schemaPattern, String tableNamePattern)
throws SQLException

Return a description of table privileges. Remark: Privileges may not apply to all columns of the table. They are ordered
by TABLE_SCHEM, TABLE_NAME, and PRIVILEGE.

The ResultSet has these columns:

TABLE_CAT String [rarr] table catalog (may be null)
TABLE_SCHEM String [rarr] table schema (may be null)
TABLE_NAME String [rarr] table name
GRANTOR [rarr] grantor of access (may be null)
GRANTEE String [rarr] grantee of access
PRIVILEGE String [rarr] name of access (SELECT, INSERT, UPDATE, REFRENCES, . . .)
IS_GRANTABLE String [rarr] “YES,” grantee is permitted to grant to others; “NO,” no grant allowed; null,
unknown

Parameters: catalog — a catalog name; “” retrieves those without a catalog; a null means that the catalog name must be
suppressed from the selection criteria.

schemaPattern — a schema name pattern; “” retrieves those without a schema.

tableNamePattern — a table name pattern

Returns: a ResultSet; each row is a description of a table privilege.

See also: getSearchStringEscape

GETTIMEDATEFUNCTIONS
public abstract String getTimeDateFunctions() throws SQLException

Get a list of time and date functions.

Returns: a comma-separated list of time and date functions

GETTYPEINFO
public abstract ResultSet getTypeInfo() throws SQLException

Get information about all the standard SQL types supported by this database. The results are ordered by DATA_TYPE.
Type definitions that are closer to their corresponding java.sql.Types are listed first. The ResultSet contains these
columns:

TYPE_NAME String [rarr] type name
DATA_TYPE short [rarr] SQL data type from java.sql.Types
PRECISION int [rarr] maximum precision
LITERAL_PREFIX String [rarr] prefix used to quote a literal (may be null)
LITERAL_SUFFIX String [rarr] suffix used to quote a literal (may be null)
CREATE_PARAMS String [rarr] parameters used to create the type (may be null)
NULLABLE short [rarr] one of these values:

typeNoNulls — does not allow NULL values
typeNullable — allows NULL values
typeNullableUnknown — nullability unknown

CASE_SENSITIVE boolean [rarr] says if type is case sensitive
SEARCHABLE short [rarr] support in WHERE clause:

typePredNone — No support
typePredChar — Only supported with WHERE . . LIKE
typePredBasic — Supported except for WHERE . . LIKE
typeSearchable — Supported for all WHERE . .

UNSIGNED_ATTRIBUTE boolean [rarr] true if unsigned
FIXED_PREC_SCALE boolean [rarr] true if the precision is fixed
AUTO_INCREMENT boolean [rarr] true if it can be used for an autoincrement value
LOCAL_TYPE_NAME String [rarr] localized version of type name (may be null)

MINIMUM_SCALE short [rarr] minimum scale supported
MAXIMUM_SCALE short [rarr] maximum scale supported
SQL_DATA_TYPE int [rarr] unused
SQL_DATETIME_SUB int [rarr] unused
NUM_PREC_RADIX int [rarr] radix — usually 2 or 10

Returns: a ResultSet; each row is a description of a SQL type supported by this database.

GETURL
public abstract String getURL() throws SQLException

Get the url for the current database.

Returns: the url or null if it is not possible to find it

GETUSERNAME
public abstract String getUserName() throws SQLException

Get the database user name for the current session.

Returns: the current session’s user name

GETVERSIONCOLUMNS
public abstract ResultSet getVersionColumns(String catalog, String schema, String table) throws
SQLException

Return information about the columns of a table that are automatically updated when any field in a row is updated.

The ResultSet contains these columns:

SCOPE short [rarr] unused
COLUMN_NAME String [rarr] column name
DATA_TYPE short [rarr] SQL data type from java.sql.Types
TYPE_NAME String [rarr] database type name
COLUMN_SIZE int [rarr] precision
BUFFER_LENGTH int [rarr] length of column value in bytes
DECIMAL_DIGITS short [rarr] scale
PSEUDO_COLUMN short [rarr] the state of a column:

versionColumnUnknown — may or may not be pseudocolumn
versionColumnNotPseudo — is not a pseudocolumn
versionColumnPseudo — is a pseudocolumn

Parameters: catalog — a catalog name; “” retrieves those without a catalog; a null means that the catalog name must be
suppressed from the selection criteria.

schema — a schema name; “” retrieves those without a schema.

table — a table name

Returns: a ResultSet; each row is a column description.

ISCATALOGATSTART

public abstract boolean isCatalogAtStart() throws SQLException

Checks whether a catalog appears at the start of a qualified table name or at the end of a qualified table name.

Returns: true if it appears at the start

ISREADONLY
public abstract boolean isReadOnly() throws SQLException

Checks whetehr the database is in read-only mode.

Returns: true if so

NULLSARESORTEDATSTART
public abstract boolean nullsAreSortedAtStart() throws SQLException

Checks whether NULL values sorted at the start regardless of sort order.

Returns: true if so

NULLSARESORTEDATEND
public abstract boolean nullsAreSortedAtEnd() throws SQLException

Checks whether NULL values sorted at the end regardless of sort order.

Returns: true if so

NULLSARESORTEDHIGH
public abstract boolean nullsAreSortedHigh() throws SQLException

Checks whether NULL values sorted high.

Returns: true if so

NULLSARESORTEDLOW
public abstract boolean nullsAreSortedLow() throws SQLException

Checks whether NULL values sorted low.

Returns: true if so

NULLPLUSNONNULLISNULL
public abstract boolean nullPlusNonNullIsNull() throws SQLException

Checks whether a concatenation of NULL values is a NULL value.

Returns: true if so

STORESUPPERCASEIDENTIFIERS

public abstract boolean storesUpperCaseIdentifiers() throws SQLException

Checks whether the database automatically converts unquoted SQL identifiers to uppercase.

Returns: true if so

STORESLOWERCASEIDENTIFIERS
public abstract boolean storesLowerCaseIdentifiers() throws SQLException

Checks whether the database automatically converts unquoted SQL identifiers to lowercase.

Returns: true if so

STORESLOWERCASEQUOTEDIDENTIFIERS
public abstract boolean storesLowerCaseQuotedIdentifiers() throws SQLException

Checks whether the database automatically converts quoted SQL identifiers to lower case.

Returns: true if so

STORESMIXEDCASEIDENTIFIERS
public abstract boolean storesMixedCaseIdentifiers() throws SQLException

Checks whether the database stores mixed case unquoted identifers.

Returns: true if so

STORESMIXEDCASEQUOTEDIDENTIFIERS
public abstract boolean storesMixedCaseQuotedIdentifiers() throws SQLException

Checks whether the database stores mixed-case quoted identifiers.

Returns: true if so

STORESUPPERCASEQUOTEDIDENTIFIERS
public abstract boolean storesUpperCaseQuotedIdentifiers() throws SQLException

Checks whether the database automatically converts quoted SQL identifiers to uppercase.

Returns: true if so

SUPPORTSALTERTABLEWITHADDCOLUMN
public abstract boolean supportsAlterTableWithAddColumn() throws SQLException

Checks whether an “ALTER TABLE” clause may be used to add a column.

Returns: true if so

SUPPORTSALTERTABLEWITHDROPCOLUMN

public abstract boolean supportsAlterTableWithDropColumn() throws SQLException

Checks whether “ALTER TABLE” clause may be used to drop a column.

Returns: true if so

SUPPORTSANSI92ENTRYLEVELSQL
public abstract boolean supportsANSI92EntryLevelSQL() throws SQLException

Checks whether the ANSI92 entry level SQL grammar is supported. Must be true for all JDBC-compliant drivers.

Returns: true if so

SUPPORTSANSI92INTERMEDIATESQL
public abstract boolean supportsANSI92IntermediateSQL() throws SQLException

Checks whether the ANSI92 intermediate SQL grammar is supported.

Returns: true if so

SUPPORTSANSI92FULLSQL
public abstract boolean supportsANSI92FullSQL() throws SQLException

Checks whether the ANSI92 full SQL grammar is supported.

Returns: true if so

SUPPORTSCATALOGSINDATAMANIPULATION
public abstract boolean supportsCatalogsInDataManipulation() throws SQLException

Checks whether a catalog name can be used in a DML statement.

Returns: true if so

SUPPORTSCATALOGSINPROCEDURECALLS
public abstract boolean supportsCatalogsInProcedureCalls() throws SQLException

Checks whether a catalog name can be used in a procedure call statement.

Returns: true if so

SUPPORTSCATALOGSINTABLEDEFINITIONS
public abstract boolean supportsCatalogsInTableDefinitions() throws SQLException

Checks whether a catalog name can be used in a table definition (DDL) statement.

Returns: true if so

SUPPORTSCATALOGSININDEXDEFINITIONS

public abstract boolean supportsCatalogsInIndexDefinitions() throws SQLException

Checks whether a catalog name can be used in an index definition (DDL) statement.

Returns: true if so

SUPPORTSCATALOGSINPRIVILEGEDEFINITIONS
public abstract boolean supportsCatalogsInPrivilegeDefinitions() throws SQLException

Checks whether a catalog name can be used in a privilege definition statement.

Returns: true if so

SUPPORTSCOLUMNALIASING
public abstract boolean supportsColumnAliasing() throws SQLException

Checks whether column aliasing is supported to provide name to computed columns with the AS SQL keyword.

Returns: true if so

SUPPORTSCONVERT
public abstract boolean supportsConvert() throws SQLException

Checks whether the CONVERT function is supported between SQL types.

Returns: true if so

SUPPORTSCONVERT
public abstract boolean supportsConvert(int fromType, int toType) throws SQLException

Checks whether the CONVERT function is supported between the given SQL types.

Parameters: fromType — the type to convert from

toType — the type to convert to

Returns: true if so

SUPPORTSCORRELATEDSUBQUERIES
public abstract boolean supportsCorrelatedSubqueries() throws SQLException

Checks whether correlated subqueries are supported.

Returns: true if so

SUPPORTSCORESQLGRAMMAR
public abstract boolean supportsCoreSQLGrammar() throws SQLException

Checks whether the ODBC Core SQL grammar is supported.

Returns: true if so

SUPPORTSDATADEFINITIONANDDATAMANIPULATIONTRANSACTIONS
public abstract boolean supportsDataDefinitionAndDataManipulation Transactions() throws SQLException

Checks whether both data definition (DDL) and data manipulation (DML) statements are supported within a transaction.

Returns: true if so

SUPPORTSDATAMANIPULATIONTRANSACTIONSONLY
public abstract boolean supportsDataManipulationTransactionsOnly() throws SQLException

Checks whether only data manipulation statements are supported within a transaction.

Returns: true if so

SUPPORTSDIFFERENTTABLECORRELATIONNAMES
public abstract boolean supportsDifferentTableCorrelationNames() throws SQLException

Checks whether table correlation names are supported and if they must be different from the table names.

Returns: true if so

SUPPORTSEXPRESSIONSINORDERBY
public abstract boolean supportsExpressionsInOrderBy() throws SQLException

Checks whether expressions are supported in ORDER BY lists.

Returns: true if so

SUPPORTSEXTENDEDSQLGRAMMAR
public abstract boolean supportsExtendedSQLGrammar() throws SQLException

Checks whether the ODBC Extended SQL grammar is supported.

Returns: true if so

SUPPORTSFULLOUTERJOINS
public abstract boolean supportsFullOuterJoins() throws SQLException

Checks whether full nested outer joins are supported.

Returns: true if so

SUPPORTSGROUPBY
public abstract boolean supportsGroupBy() throws SQLException

Checks whether the SQL GROUP BY clause is supported.

Returns: true if so

SUPPORTSGROUPBYUNRELATED
public abstract boolean supportsGroupByUnrelated() throws SQLException

Checks whether a GROUP BY clause can use columns that are not in the SELECT statement.

Returns: true if so

SUPPORTSGROUPBYBEYONDSELECT
public abstract boolean supportsGroupByBeyondSelect() throws SQLException

Checks whether a GROUP BY clause can add columns that are not in the SELECT statement, provided it specifies all
the columns in the SELECT clause.

Returns: true if so

SUPPORTSINTEGRITYENHANCEMENTFACILITY
public abstract boolean supportsIntegrityEnhancementFacility() throws SQLException

Checks whether the SQL Integrity Enhancement Facility is supported.

Returns: true if so

SUPPORTSLIKEESCAPECLAUSE
public abstract boolean supportsLikeEscapeClause() throws SQLException

Checks whether the escape character is supported in “LIKE” clauses.

Returns: true if so

SUPPORTSLIMITEDOUTERJOINS
public abstract boolean supportsLimitedOuterJoins() throws SQLException

Checks whether there is limited support for outer joins.

Returns: true if so

SUPPORTSMINIMUMSQLGRAMMAR
public abstract boolean supportsMinimumSQLGrammar() throws SQLException

Checks whether the ODBC Minimum SQL grammar is supported. Must be true for all JDBC-compliant drivers.

Returns: true if so

SUPPORTSMIXEDCASEIDENTIFIERS
public abstract boolean supportsMixedCaseIdentifiers() throws SQLException

Checks whether the database supports unquoted mixed-case identifiers.

Returns: true if so

SUPPORTSMIXEDCASEQUOTEDIDENTIFIERS
public abstract boolean supportsMixedCaseQuotedIdentifiers() throws SQLException

Checks whether the database supports mixed-case quoted identifiers.

Returns: true if so

SUPPORTSMULTIPLERESULTSETS
public abstract boolean supportsMultipleResultSets() throws SQLException

Checks whether multiple ResultSets returned after a single execute are supported.

Returns: true if so

SUPPORTSMULTIPLETRANSACTIONS
public abstract boolean supportsMultipleTransactions() throws SQLException

Checks whether multiple transactions are supported simultaneously on different connections.

Returns: true if so

SUPPORTSNONNULLABLECOLUMNS
public abstract boolean supportsNonNullableColumns() throws SQLException

Checks whether columns can be defined as non-nullable.

Returns: true if so

SUPPORTSOPENCURSORSACROSSCOMMIT
public abstract boolean supportsOpenCursorsAcrossCommit() throws SQLException

Checks whether cursors can remain open across commits.

Returns: true if so

See also: disableAutoClose

SUPPORTSOPENCURSORSACROSSROLLBACK
public abstract boolean supportsOpenCursorsAcrossRollback() throws SQLException

Checks whether cursors can remain open across rollbacks.

Returns: true if so

See also: disableAutoClose

SUPPORTSOPENSTATEMENTSACROSSCOMMIT

public abstract boolean supportsOpenStatementsAcrossCommit() throws SQLException

Checks whether statements can remain open across commits.

Returns: true if so

See also: disableAutoClose

SUPPORTSOPENSTATEMENTSACROSSROLLBACK
public abstract boolean supportsOpenStatementsAcrossRollback() throws SQLException

Checks whether statements can remain open across rollbacks.

Returns: true if so

See also: disableAutoClose

SUPPORTSORDERBYUNRELATED
public abstract boolean supportsOrderByUnrelated() throws SQLException

Checks whether an ORDER BY clause can use columns that are not in the SELECT statement.

Returns: true if so

SUPPORTSOUTERJOINS
public abstract boolean supportsOuterJoins() throws SQLException

Checks whether the database supports outer joins.

Returns: true if so

SUPPORTSPOSITIONEDDELETE
public abstract boolean supportsPositionedDelete() throws SQLException

Checks whether the database supports positioned DELETE.

Returns: true if so

SUPPORTSPOSITIONEDUPDATE
public abstract boolean supportsPositionedUpdate() throws SQLException

Checks whether the database supports positioned UPDATE.

Returns: true if so

SUPPORTSSCHEMASINDATAMANIPULATION
public abstract boolean supportsSchemasInDataManipulation() throws SQLException

Checks whether a schema name can be used in a data manipulation (DML) statement.

Returns: true if so

SUPPORTSSCHEMASINPROCEDURECALLS
public abstract boolean supportsSchemasInProcedureCalls() throws SQLException

Checks whether a schema name can be used in a procedure call statement.

Returns: true if so

SUPPORTSSCHEMASINTABLEDEFINITIONS
public abstract boolean supportsSchemasInTableDefinitions() throws SQLException

Checks whether a schema name can be used in a table definition (DDL) statement.

Returns: true if so

SUPPORTSSCHEMASININDEXDEFINITIONS
public abstract boolean supportsSchemasInIndexDefinitions() throws SQLException

Checks whether a schema name can be used in an index definition (DDL) statement.

Returns: true if so

SUPPORTSSCHEMASINPRIVILEGEDEFINITIONS
public abstract boolean supportsSchemasInPrivilegeDefinitions() throws SQLException

Checks whether a schema name can be used in a privilege definition statement.

Returns: true if so

SUPPORTSSELECTFORUPDATE
public abstract boolean supportsSelectForUpdate() throws SQLException

Checks whether the database supports SELECT for UPDATE clauses.

Returns: true if so

SUPPORTSSTOREDPROCEDURES
public abstract boolean supportsStoredProcedures() throws SQLException

Checks whether the stored procedure escape syntax can be used to call stored procedures.

Returns: true if so

SUPPORTSSUBQUERIESINCOMPARISONS
public abstract boolean supportsSubqueriesInComparisons() throws SQLException

Checks whether subqueries are supported in comparison expressions.

Returns: true if so

SUPPORTSSUBQUERIESINEXISTS
public abstract boolean supportsSubqueriesInExists() throws SQLException

Checks whether subqueries are supported in exists expressions.

Returns: true if so

SUPPORTSSUBQUERIESININS
public abstract boolean supportsSubqueriesInIns() throws SQLException

Checks whether subqueries are supported in IN statements.

Returns: true if so

SUPPORTSSUBQUERIESINQUANTIFIEDS
public abstract boolean supportsSubqueriesInQuantifieds() throws SQLException

Checks whether subqueries are supported in quantified expressions.

Returns: true if so

SUPPORTSTABLECORRELATIONNAMES
public abstract boolean supportsTableCorrelationNames() throws SQLException

Checks whether table correlation names are supported.

Returns: true if so

SUPPORTSTRANSACTIONS
public abstract boolean supportsTransactions() throws SQLException

Checks whether the database supports transactions.

Returns: true if transactions are supported

SUPPORTSTRANSACTIONISOLATIONLEVEL
public abstract boolean supportsTransactionIsolationLevel(int level) throws SQLException

Checks whether the database supports the given transaction isolation level.

Parameters: level — the values are defined in java.sql.Connection.

Returns: true if so

See also: Connection

SUPPORTSUNION

public abstract boolean supportsUnion() throws SQLException

Checks whether the database supports SQL UNION.

Returns: true if so

SUPPORTSUNIONALL
public abstract boolean supportsUnionAll() throws SQLException

Checks whether the database supports SQL UNION ALL.

Returns: true if so

USESLOCALFILES
public abstract boolean usesLocalFiles() throws SQLException

Checks whether the database stores tables in a local file.

Returns: true if so

USESLOCALFILEPERTABLE
public abstract boolean usesLocalFilePerTable() throws SQLException

Checks whether the database uses a file for each table.

Returns: true if the database uses a local file for each table

Interface java.sql.Driver

public interface Driver

extends Object

Drivers are loaded by the DriverManager to provide connections to specific databases. A user can load and register a
JDBC driver by calling Class.forName(“a.specific.driver”). The DriverManager will use this driver if it can successfully
connect to a given database URL.

See also: DriverManager, Connection

Methods:

ACCEPTSURL
public abstract boolean acceptsURL(String url) throws SQLException

This method is used to check whether this URL syntax is recognized by the driver and if it is capable of opening a
connection to it. A driver will usually return true if it is able to understand the subprotocol field of the given URL.

Parameters: url — the URL of the database

Returns: true if this driver can connect to the given URL

CONNECT
public abstract Connection connect(String url, Properties info) throws SQLException

This method is used to get a Connection object for a particular database URL. The DriverManager invokes this method
for all Drivers that are loaded, and receives either a null if the Driver is not appropriate for this connection or a
Connection object in the opposite case. Note that a SQLException is thrown by the Driver if it has trouble connecting to
the database.

Connection arguments may be passed as tag/value pairs via java.util.Properties. At minimum, “user” and “password”
properties are included in the Properties.

Parameters: url — the URL of the database to connect to

info — a list of tag/value pairs as connection arguments

Returns: a Connection to the URL

GETMAJORVERSION
public abstract int getMajorVersion()

Get the driver’s major version number.

GETMINORVERSION
public abstract int getMinorVersion()

Get the driver’s minor version number.

GETPROPERTYINFO
public abstract DriverPropertyInfo[] getPropertyInfo(String url, Properties info) throws SQLException

Get the necessary properties that must be provided to use this Driver. The property list may vary according to the values
supplied so far, so it may be necessary to iterate though several calls to this method to discover all the mandatory
properties.

Parameters: url — the URL of the database to connect to

info — a list of tag/value pair properties

Returns: an array of DriverPropertyInfo objects; this array may be empty if no properties are required.

JDBCCOMPLIANT
public abstract boolean jdbcCompliant()

Report whether the Driver is a genuine JDBC COMPLIANT™ driver.

The Driver reports true only if it passes the JDBC compliance tests, meaning that it provides full support for both the
JDBC API and for SQL 92 Entry Level.

Returns: true if so

Interface java.sql.PreparedStatement

public interface PreparedStatement

extends Object

extends Statement

It is possible to precompile SQL statements and execute them with different parameters as many times as wanted.
setXXX methods are used to set IN parameter values. They must specify types compatible with the defined SQL type of
the input parameter.

Arbitrary parameter type conversions are allowed, but then the setObject method should be used with a SQL type to
specify the target type.

See also: prepareStatement, ResultSet

Methods:

CLEARPARAMETERS
public abstract void clearParameters() throws SQLException

clearParameters() immediately releases the resources used by the current parameter values. Parameter values are not
automatically cleared after execution of a preparedStatement, so they can be used for repeated use.

Returns: nothing

EXECUTE
public abstract boolean execute() throws SQLException

This method executes the statement with the IN parameter values just set, if any. Note that execute is normally used for
prepared statements that return multiple results.

Returns: true if the next result is a ResultSet; false if it is an update count or there is no more result

See also: execute

EXECUTEQUERY
public abstract ResultSet executeQuery() throws SQLException

executeQuery() is used to execute prepared SQL queries (SELECT only). It returns a ResultSet.

Returns: a ResultSet that contains the data produced by the query; never null

EXECUTEUPDATE
public abstract int executeUpdate() throws SQLException

executeUpdate is used to execute a SQL INSERT, UPDATE, or DELETE statement. It also supports SQL statements

that return nothing, such as SQL DDL.

Returns: the number of rows affected for INSERT, UPDATE, or DELETE; or 0 for SQL statements that return nothing

SETASCIISTREAM
public abstract void setAsciiStream(int parameterIndex, InputStream x, int length) throws SQLException

setAsciiStream() is used to set very large LONGVARCHAR parameters. The ASCII data may be sent using a java.io.
inputStream. JDBC stops sending data when it reaches EOF (end of file). ASCII characters are converted to the database
CHAR format.

Parameters: parameterIndex — the parameter index begins at 1.

x — the ascii data stream

length — the data length in bytes

SETBIGDECIMAL
public abstract void setBigDecimal(int parameterIndex, BigDecimal x) throws SQLException

Supplies a java.math.BigDecimal value that will be converted to a SQL NUMERIC value when sent to the database.

Parameters: parameterIndex — the parameter index begins at 1.

x — the parameter value

SETBINARYSTREAM
public abstract void setBinaryStream(int parameterIndex, InputStream x, int length) throws SQLException

setBinaryStream() is used to set very large LONGVARBINARY parameters. The binary data may be sent using a java.io.
inputStream. JDBC stops sending data when it reaches EOF (end of file).

Parameters: parameterIndex — the parameter index begins at 1.

x — the binary data stream

length — the data length in bytes

SETBOOLEAN
public abstract void setBoolean(int parameterIndex, boolean x) throws SQLException

Supplies a Java boolean value that is converted to a SQL BIT value when sent to the database.

Parameters: parameterIndex — the parameter index begins at 1.

x — the parameter value

SETBYTE
public abstract void setByte(int parameterIndex, byte x) throws SQLException

Supplies a Java byte value that is converted to a SQL TINYINT value when sent to the database.

Parameters: parameterIndex — the parameter index begins at 1.

x — the parameter value

SETBYTES
public abstract void setBytes(int parameterIndex, byte x[]) throws SQLException

Supplies a Java array of bytes that is converted to a SQL VARBINARY or LONGVARBINARY when sent to the
database.

Parameters: parameterIndex — the parameter index begins at 1.

x — the parameter value

SETDATE
public abstract void setDate(int parameterIndex, Date x) throws SQLException

Supplies a java.sql.Date value that is converted to a SQL DATE value when sent to the database.

Parameters: parameterIndex — the parameter index begins at 1.

x — the parameter value

SETDOUBLE
public abstract void setDouble(int parameterIndex, double x) throws SQLException

Supplies a Java double value that is converted to a SQL DOUBLE value when sent to the database.

Parameters: parameterIndex — the parameter index begins at 1.

x — the parameter value

SETFLOAT
public abstract void setFloat(int parameterIndex, float x) throws SQLException

Supplies a Java float value that is converted to a SQL FLOAT value when sent to the database.

Parameters: parameterIndex — the parameter index begins at 1.

x — the parameter value

SETINT
public abstract void setInt(int parameterIndex, int x) throws SQLException

Supplies a Java int value that is converted to a SQL INTEGER value when sent to the database.

Parameters: parameterIndex — the parameter index begins at 1.

x — the parameter value

SETLONG
public abstract void setLong(int parameterIndex, long x) throws SQLException

Supplies a Java long value that is converted to a SQL BIGINT value when sent to the database.

Parameters: parameterIndex — the parameter index begins at 1.

x — the parameter value

SETNULL
public abstract void setNull(int parameterIndex, int sqlType) throws SQLException

Supplies a SQL NULL value. The parameter’s SQL type must be supplied.

Parameters: parameterIndex — the parameter index begins at 1.

sqlType — a SQL type code (see java.sql.Types)

SETOBJECT
public abstract void setObject(int parameterIndex, Object x,int targetSqlType, int scale) throws SQLException

Supplies a parameter value using an object that is converted to the targetSqlType when sent to the database. Abstract
data types may be passed using a Driver specific Java type and using java.sql.types.OTHER as targetSqlType.

Parameters: parameterIndex — the parameter index begins at 1.

x — the object containing the input parameter value

targetSqlType — a SQL-type code (see java.sql.Types)

scale — Number of digits after the decimal for java.sql.Types.DECIMAL or java.sql.Types.NUMERIC types. Ignored
for other types.

See also: Types

SETOBJECT
public abstract void setObject(int parameterIndex, Object x, int targetSqlType) throws SQLException

Same as setObject() but assumes scale of zero.

SETOBJECT
public abstract void setObject(int parameterIndex, Object x) throws SQLException

Same as setObject() but uses the standard mapping from Java Object types to SQL types.

Parameters: parameterIndex — the parameter index begins at 1.

x — the object containing the input parameter value

SETSHORT
public abstract void setShort(int parameterIndex, short x) throws SQLException

Supplies a Java short value that is converted to a SQL SMALLINT value when sent to the database.

Parameters: parameterIndex — the parameter index begins at 1.

x — the parameter value

SETSTRING
public abstract void setString(int parameterIndex, String x) throws SQLException

Supplies a Java String value that is converted to a SQL VARCHAR or LONGVARCHAR value when sent to the
database.

Parameters: parameterIndex — the parameter index begins at 1.

x — the parameter value

SETTIME
public abstract void setTime(int parameterIndex, Time x) throws SQLException

Supplies a java.sql.Time value that is converted to a SQL TIME value when sent to the database.

Parameters: parameterIndex — the parameter index begins at 1.

x — the parameter value

SETTIMESTAMP
public abstract void setTimestamp(int parameterIndex, Timestamp x) throws SQLException

Supplies a java.sql.Timestamp value that is converted to a SQL TIMESTAMP value when sent to the database.

Parameters: parameterIndex — the parameter index begins at 1.

x — the parameter value

SETUNICODESTREAM
public abstract void setUnicodeStream(int parameterIndex, InputStream x,int length) throws SQLException

setUnicodeStream() is used to set very large LONGVARCHAR parameters. The UNICODE data may be sent using a
java.io.inputStream. JDBC stops sending data when it reaches EOF (end of file). UNICODE characters are converted to
the database CHAR format.

Parameters: parameterIndex — the parameter index begins at 1.

x — the unicode data stream

length — the data length in bytes

Interface java.sql.ResultSet

public interface ResultSet

extends Object

SQL queries and many DatabaseMetaData methods return rows of data in ResultSet objects. Such rows must be
retrieved in sequence using the ResultSet methods. The next() method is used to scroll through the rows. A ResultSet
maintains a cursor pointing to its current row of data. The cursor is initially positioned before the first row. The “next”
method moves the cursor to the next row.

Column values must also be retrieved one by one. The getXXX methods make it possible to access these columns either
using the index number of the column or the name of the column (which is case insensitive). Using the column index is
the most efficient. Note that the first column is numbered 1. The column values must be retrieved from left to right and
only once per column.

See also: executeQuery, getResultSet, ResultSetMetaData

Methods:

CLEARWARNINGS
public abstract void clearWarnings() throws SQLException

Clears all SQLWarnings. getWarning() will return null after a clearWarning().

Returns: nothing

CLOSE
public abstract void close() throws SQLException

Releases all resources associated to the ResultSet. Normally, a ResultSet is automatically closed by the Statement that
generated it when that Statement is closed, reexecuted, or is used to retrieve the next result from a sequence of multiple
results. The garbage collector also closes ResultSets when they are no longer used.

Returns: nothing

FINDCOLUMN
public abstract int findColumn(String columnName) throws SQLException

Return the column index from its column name.

Parameters: columnName — the name of the column

Returns: the column index

GETASCIISTREAM
public abstract InputStream getAsciiStream(int columnIndex) throws SQLException

This method can be used to retrieve large LONGVARCHAR values. If necessary, the JDBC driver converts the data
from database format to ASCII.

Parameters: columnIndex — the column index begins at 1.

Returns: a Java input stream; if the value is SQL NULL, then the result is null.

GETASCIISTREAM
public abstract InputStream getAsciiStream(String columnName) throws SQLException

This method can be used to retrieve large LONGVARCHAR values. If necessary, the JDBC driver converts the data
from database format to ASCII.

Parameters: columnName — the name of the column

Returns: a Java input stream; if the value is SQL NULL, then the result is null.,

GETBIGDECIMAL
public abstract BigDecimal getBigDecimal(int columnIndex, int scale) throws SQLException

Get the value of a column as a java.math.BigDecimal object.

Parameters: columnIndex — the column index begins at 1.

scale — the number of digits to the right of the decimal

Returns: the column value; if the value is SQL NULL, then the result is null.

GETBIGDECIMAL
public abstract BigDecimal getBigDecimal(String columnName, int scale) throws SQLException

Get the value of a column as a java.math.BigDecimal object.

Parameters: columnName — the name of the column

scale — the number of digits to the right of the decimal

Returns: the column value; if the value is SQL NULL, then the result is null.

GETBINARYSTREAM
public abstract InputStream getBinaryStream(int columnIndex) throws SQLException

This method can be used to retrieve large LONGVARBINARY values.

Parameters: columnIndex — the column index begins at 1.

Returns: a Java input stream that delivers the database column value as a stream of uninterpreted bytes; if the value is
SQL NULL, then the result is null.

GETBINARYSTREAM
public abstract InputStream getBinaryStream(String columnName) throws SQLException

This method can be used to retrieve large LONGVARBINARY values.

Parameters: columnName — the name of the column

Returns: a Java input stream that delivers the database column value as a stream of uninterpreted bytes. If the value is
SQL NULL, then the result is null.

GETBOOLEAN
public abstract boolean getBoolean(int columnIndex) throws SQLException

Get the value of a column as a Java boolean.

Parameters: columnIndex — the column index begins at 1.

Returns: the column value; if the value is SQL NULL, then the result is false.

GETBOOLEAN
public abstract boolean getBoolean(String columnName) throws SQLException

Get the value of a column as a Java boolean.

Parameters: columnName — the name of the column

Returns: the column value; if the value is SQL NULL, then the result is false.

GETBYTE
public abstract byte getByte(int columnIndex) throws SQLException

Get the value of a column as a Java byte.

Parameters: columnIndex — the column index begins at 1.

Returns: the column value; if the value is SQL NULL, then the result is 0.

GETBYTE
public abstract byte getByte(String columnName) throws SQLException

Get the value of a column as a Java byte.

Parameters: columnName — the name of the column

Returns: the column value; if the value is SQL NULL, then the result is 0.

GETBYTES
public abstract byte[] getBytes(int columnIndex) throws SQLException

Get the value of a column as an array of Java bytes representing the raw values returned by the driver.

Parameters: columnIndex — the column index begins at 1.

Returns: the column value; if the value is SQL NULL, then the result is null.

GETBYTES
public abstract byte[] getBytes(String columnName) throws SQLException

Get the value of a column as an array of Java bytes representing the raw values returned by the driver.

Parameters: columnName — the name of the column

Returns: the column value; if the value is SQL NULL, then the result is null.

GETCURSORNAME
public abstract String getCursorName() throws SQLException

JDBC supports positioned updates and positioned deletes. This method returns the name of the current SQL cursor used
for this ResultSet.

Returns: the ResultSet’s SQL cursor name

GETDATE
public abstract Date getDate(int columnIndex) throws SQLException

Get the value of a column as a java.sql.Date object.

Parameters: columnIndex — the column index begins at 1.

Returns: the column value; if the value is SQL NULL, then the result is null.

GETDATE
public abstract Date getDate(String columnName) throws SQLException

Get the value of a column as a java.sql.Date object.

Parameters: columnName — the name of the column

Returns: the column value; if the value is SQL NULL, then the result is null.

GETDOUBLE
public abstract double getDouble(int columnIndex) throws SQLException

Get the value of a column as a Java double.

Parameters: columnIndex — the column index begins at 1.

Returns: the column value; if the value is SQL NULL, then the result is 0.

GETDOUBLE
public abstract double getDouble(String columnName) throws SQLException

Get the value of a column as a Java double.

Parameters: columnName — the name of the column

Returns: the column value; if the value is SQL NULL, then the result is 0.

GETFLOAT
public abstract float getFloat(int columnIndex) throws SQLException

Get the value of a column as a Java float.

Parameters: columnIndex — the column index begins at 1.

Returns: the column value; if the value is SQL NULL, then the result is 0.

GETFLOAT
public abstract float getFloat(String columnName) throws SQLException

Get the value of a column as a Java float.

Parameters: columnName — the name of the column

Returns: the column value; if the value is SQL NULL, then the result is 0.

GETINT
public abstract int getInt(int columnIndex) throws SQLException

Get the value of a column as a Java int.

Parameters: columnIndex — the column index begins at 1.

Returns: the column value; if the value is SQL NULL, then the result is 0.

GETINT
public abstract int getInt(String columnName) throws SQLException

Get the value of a column as a Java int.

Parameters: columnName — the name of the column

Returns: the column value; if the value is SQL NULL, then the result is 0.

GETLONG
public abstract long getLong(int columnIndex) throws SQLException

Get the value of a column as a Java long.

Parameters: columnIndex — the column index begins at 1.

Returns: the column value; if the value is SQL NULL, then the result is 0.

GETLONG
public abstract long getLong(String columnName) throws SQLException

Get the value of a column as a Java long.

Parameters: columnName — the name of the column

Returns: the column value; if the value is SQL NULL, then the result is 0.

GETSHORT
public abstract short getShort(int columnIndex) throws SQLException

Get the value of a column as a Java short.

Parameters: columnIndex — the column index begins at 1.

Returns: the column value; if the value is SQL NULL, then the result is 0.

GETSHORT
public abstract short getShort(String columnName) throws SQLException

Get the value of a column as a Java short.

Parameters: columnName — the name of the column

Returns: the column value; if the value is SQL NULL, then the result is 0.

GETSTRING
public abstract String getString(int columnIndex) throws SQLException

Get the value of a column as a Java String.

Parameters: columnIndex — the column index begins at 1.

Returns: the column value; if the value is SQL NULL, then the result is 0.

GETSTRING
public abstract String getString(String columnName) throws SQLException

Get the value of a column as a Java String.

Parameters: columnName — the name of the column

Returns: the column value; if the value is SQL NULL, then the result is null.

GETTIME
public abstract Time getTime(int columnIndex) throws SQLException

Get the value of a column as a java.sql.Time object.

Parameters: columnIndex — the column index begins at 1.

Returns: the column value; if the value is SQL NULL, then the result is null.

GETTIME
public abstract Time getTime(String columnName) throws SQLException

Get the value of a column as a java.sql.Time object.

Parameters: columnName — the name of the column

Returns: the column value; if the value is SQL NULL, then the result is null.

GETTIMESTAMP
public abstract Timestamp getTimestamp(int columnIndex) throws SQLException

Get the value of a column as a java.sql.Timestamp object.

Parameters: columnIndex — the column index begins at 1.

Returns: the column value; if the value is SQL NULL, then the result is null.

GETTIMESTAMP
public abstract Timestamp getTimestamp(String columnName) throws SQLException

Get the value of a column as a java.sql.Timestamp object.

Parameters: columnName — the name of the column

Returns: the column value; if the value is SQL NULL, then the result is null.

GETUNICODESTREAM
public abstract InputStream getUnicodeStream(int columnIndex) throws SQLException

This method can be used to retrieve large LONGVARCHAR values. If necessary, the JDBC driver converts the data
from database format to Unicode.

Parameters: columnIndex — the column index begins at 1.

Returns: a Java input stream; if the value is SQL NULL, then the result is null.

GETUNICODESTREAM
public abstract InputStream getUnicodeStream(String columnName) throws SQLException

This method can be used to retrieve large LONGVARCHAR values. If necessary, the JDBC driver converts the data
from database format to Unicode.

Parameters: columnName — the name of the column

Returns: a Java input stream the column value; if the value is SQL NULL, then the result is null.

GETMETADATA
public abstract ResultSetMetaData getMetaData() throws SQLException

A ResultSetMetaData object dynamically provides information regarding a ResultSet. This method returns such an
object. It is useful, for example, for getting the number of columns and their types from a ResultSet.

Returns: a ResultSetMetaData object

GETOBJECT
public abstract Object getObject(int columnIndex) throws SQLException

Get the value of a column as a Java object. The type of the Java object is the Java object type corresponding to the
column’s SQL type according to standard JDBC-type mapping. It can also be used to read database-specific abstract data
types.

Parameters: columnIndex — the column index begins at 1.

Returns: a java.lang.Object holding the column value

GETOBJECT
public abstract Object getObject(String columnName) throws SQLException

Get the value of a column as a Java object. The type of the Java object is the Java object type corresponding to the
column’s SQL type according to the standard JDBC-type mapping. It can also be used to read database-specific abstract
data types.

Parameters: columnName — the name of the column

Returns: a java.lang.Object holding the column value

GETWARNINGS
public abstract SQLWarning getWarnings() throws SQLException

Get the first warning reported by calls on the current ResultSet. The next warnings are chained to this SQLWarning and
are automatically cleared each time a new row is read.

Returns: the first SQLWarning or null

NEXT
public abstract boolean next() throws SQLException

This method is used to scan a ResultSet’s rows. The first call to this method makes the first row the current row; the
second call makes the second row the current row, and so forth. Note that the next() method automatically closes input

streams used in conjunction with the getXXXStream() methods and clears the warning chain of the ResultSet.

Returns: true if the new current row is valid; false when there are no more rows

WASNULL
public abstract boolean wasNull() throws SQLException

If a column contains a SQL NULL value, this method returns true. wasNull() cannot be invoked before getting the
column’s value with one of the getXXX() methods.

Returns: true if last column read was SQL NULL

Interface java.sql.ResultSetMetaData

public interface ResultSetMetaData

extends Object

All ResultSetMetaData methods return information related to ResultSets. They may be used to dynamically discover the
characteristics of a ResultSet.

Variables:

COLUMNNONULLS
public final static int columnNoNulls

NULL values are not allowed.

COLUMNNULLABLE
public final static int columnNullable

NULL values are allowed.

COLUMNNULLABLEUNKNOWN
public final static int columnNullableUnknown

The nullability is unknown.

Methods:

GETCATALOGNAME
public abstract String getCatalogName(int column) throws SQLException

Get the column’s table’s catalog name.

Parameters: columnIndex — the column index begins at 1.

Returns: column name; “” if no catalog name available

GETCOLUMNCOUNT
public abstract int getColumnCount() throws SQLException

Get the number of columns in the ResultSet.

Returns: the number

GETCOLUMNDISPLAYSIZE
public abstract int getColumnDisplaySize(int column) throws SQLException

Get the column’s normal maximum width in chararcters.

Parameters: columnIndex — the column index begins at 1.

Returns: the maximum width

GETCOLUMNLABEL
public abstract String getColumnLabel(int column) throws SQLException

Get the suggested column label.

Parameters: columnIndex — the column index begins at 1.

Returns: the suggested column label

GETCOLUMNNAME
public abstract String getColumnName(int column) throws SQLException

Get a column’s name.

Parameters: columnIndex — the column index begins at 1.

Returns: the column name

GETCOLUMNTYPE
public abstract int getColumnType(int column) throws SQLException

Get a column’s SQL type.

Parameters: columnIndex — the column index begins at 1.

Returns: the SQL type

See also: Types

GETCOLUMNTYPENAME
public abstract String getColumnTypeName(int column) throws SQLException

Get a column’s data source specific type name.

Parameters: columnIndex — the column index begins at 1.

Returns: the type name

GETPRECISION
public abstract int getPrecision(int column) throws SQLException

Get a column’s number of decimal digits.

Parameters: columnIndex — the column index begins at 1.

Returns: the precision

GETSCALE
public abstract int getScale(int column) throws SQLException

Get a column’s number of digits to right of decimal.

Parameters: columnIndex — the column index begins at 1.

Returns: the scale

GETSCHEMANAME
public abstract String getSchemaName(int column) throws SQLException

Get a column’s table’s schema.

Parameters: columnIndex — the column index begins at 1.

Returns: the schema name; “” if no schema name available

GETTABLENAME
public abstract String getTableName(int column) throws SQLException

Get a column’s table name.

Returns: the table name; “” if not available

ISAUTOINCREMENT
public abstract boolean isAutoIncrement(int column) throws SQLException

Checks whether the column’s value is auto-incremented.

Parameters: columnIndex — the column index begins at 1.

Returns: true if so

ISCASESENSITIVE
public abstract boolean isCaseSensitive(int column) throws SQLException

Checks whether a column is case sensitive.

Parameters: columnIndex — the column index begins at 1.

Returns: true if so

ISCURRENCY
public abstract boolean isCurrency(int column) throws SQLException

Checks whether the column is a currency value.

Parameters: columnIndex — the column index begins at 1.

Returns: true if so

ISDEFINITELYWRITABLE
public abstract boolean isDefinitelyWritable(int column) throws SQLException

Checks whether an update of the column will definitely succeed.

Parameters: columnIndex — the column index begins at 1.

Returns: true if so

ISNULLABLE
public abstract int isNullable(int column) throws SQLException

Checks whether this column may be set to SQL NULL.

Parameters: columnIndex — the column index begins at 1.

Returns: columnNoNulls, columnNullable, or columnNullableUnknown

ISREADONLY
public abstract boolean isReadOnly(int column) throws SQLException

Checks whether a column is definitely not writeable.

Parameters: columnIndex — the column index begins at 1.

Returns: true if so

ISSEARCHABLE
public abstract boolean isSearchable(int column) throws SQLException

Checks whether the column may be used in a SQL WHERE clause.

Parameters: columnIndex — the column index begins at 1.

Returns: true if so

ISSIGNED
public abstract boolean isSigned(int column) throws SQLException

Checks whether the column is signed.

Parameters: columnIndex — the column index begins at 1.

Returns: true if so

ISWRITABLE
public abstract boolean isWritable(int column) throws SQLException

Checks whether a column’s value is possibly updatable.

Parameters: columnIndex — the column index begins at 1.

Returns: true if so

Interface java.sql.Statement

public interface Statement

extends Object

Statement objects are used to create database and driver resources before and during the execution of static SQL
statements. They are also used to obtain the SQL statements’ results after being executed within the database. The
results, if they are of the form of rows of data, must be retrieved using ResultSets. Note that a SQL statement may return
multiple results, but not at the same time. If necessary, instantiate different Statement objects to fetch different
ResultSets simultaneously.

See also: createStatement, ResultSet

Methods:

CANCEL
public abstract void cancel() throws SQLException

cancel() is used to terminate the execution of a statement. It can only be used within a thread separate from that
executing the statement.

CLEARWARNINGS
public abstract void clearWarnings() throws SQLException

Clears the chain of SQLWarnings for the current Statement.

CLOSE
public abstract void close() throws SQLException

close() releases a Statements’ database and JDBC driver resources, as well as its Statement, if one exists.

EXECUTE
public abstract boolean execute(String sql) throws SQLException

This method executes a SQL statement. The statement may return multiple results, that is, results sets and update counts.
In this case, the execute(), getMoreResults(), getResultSet(), and getUpdateCount() methods let you fetch those results.
execute() indicates whether the first result is a ResultSet or an update count. getResultSet() and getUpdateCount() are
used to retrieve the result, and getMoreResults() is used to discover subsequent results, if any.

Parameters: sql — SQL statement

Returns: true if the first result is a ResultSet; false if it is an integer

See also: getResultSet, getUpdateCount, getMoreResults

EXECUTEQUERY
public abstract ResultSet executeQuery(String sql) throws SQLException

Unlike execute(), executeQuery() is used to execute a SQL statement that returns a single ResultSet.

Parameters: sql — a SQL SELECT statement

Returns: a ResultSet containing the result rows, if any

EXECUTEUPDATE
public abstract int executeUpdate(String sql) throws SQLException

Execute a statement that returns an update count or just nothing (for example: SQL INSERT, UPDATE, or DELETE
statements, or a SQL DDL statement such as CREATE TABLE).

Parameters: sql — a SQL statement that returns an integer or nothing

Returns: the update count for SQL INSERT, UPDATE, or DELETE; 0 for others

GETRESULTSET
public abstract ResultSet getResultSet() throws SQLException

getResultSet() is used to get the current result as a ResultSet. It can only be called once per result.

Returns: the current result as a ResultSet, or null if the result is an integer or there are no more results

See also: execute

GETUPDATECOUNT
public abstract int getUpdateCount() throws SQLException

getUpdateCount() returns the current result as an update count that represents the number of rows affected by the
statement. getUpdateCount may also return -1 if the result is a ResultSet or there are no more results. It can only be

called once per result.

Returns: the current result as an update count or -1 if it is a ResultSet or there are no more results

See also: execute

GETMAXFIELDSIZE
public abstract int getMaxFieldSize() throws SQLException

This method returns the maximum length of data returned for any column value. It only applies to BINARY,
VARBINARY, LONGVARBINARY, CHAR, VARCHAR, and LONGVARCHAR columns.

Returns: the current maximum column size limit or zero if unlimited

GETMAXROWS
public abstract int getMaxRows() throws SQLException

This method returns the maximum number of rows allowed for a ResultSet. Excessive rows are discarded.

Returns: the current maximum row limit or zero if unlimited

GETMORERESULTS
public abstract boolean getMoreResults() throws SQLException

getMoreResults() is used to navigate results. If true is returned, the current result is a ResultSet. If false, the result is an
update count or there are no more results (there are no more results when (!getMoreResults() && (getUpdateCount() == -
1)). Note that getMoreResults() implicitly closes any current ResultSet obtained with getResultSet.

Returns: true if the next result is a ResultSet, or false if it is an integer or there are no more results

See also: execute

GETQUERYTIMEOUT
public abstract int getQueryTimeout() throws SQLException

A driver can wait a number of seconds for a Statement to execute. If the limit is exceeded, a SQLException is thrown.

Returns: the current query timeout limit in seconds or zero if unlimited

GETWARNINGS
public abstract SQLWarning getWarnings() throws SQLException

Statement and ResultSet warnings are chained together. This method is used to get the first SQLWarning of the chain.
The chain is cleared each time a statement is executed.

Returns: the first SQLWarning or null

SETCURSORNAME
public abstract void setCursorName(String name) throws SQLException

This method sets the SQL cursor name for the current Statement. The cursor name can then be used in SQL positioned
update or delete statements to identify the current row in the ResultSet. Note that cursor names must be unique within a
Connection.

Parameters: name — the cursor name

SETESCAPEPROCESSING
public abstract void setEscapeProcessing(boolean enable) throws SQLException

A driver does escape substitution by default unless this method has been invoked with a parameter of Boolean value
false.

Parameters: enable — true enables escape substitution: false disables it.

SETMAXFIELDSIZE
public abstract void setMaxFieldSize(int max) throws SQLException

Limit the size of data that can be returned for any column value. This only applies to BINARY, VARBINARY,
LONGVARBINARY, CHAR, VARCHAR, and LONGVARCHAR columns.

Parameters: max — the maximum column size limit or zero for unlimited

SETMAXROWS
public abstract void setMaxRows(int max) throws SQLException

setMaxRows() can be used to limit the rows returned by a query. Excessive rows are silently discarded.

Parameters: max — the maximum rows limit or zero for unlimited

SETQUERYTIMEOUT
public abstract void setQueryTimeout(int seconds) throws SQLException

A driver can wait a number of seconds for a Statement to execute. If the limit is exceeded, a SQLException is thrown.

Parameters: seconds — the query timeout limit in seconds or zero for unlimited

Class java.sql.Date

java.lang.Object
???java.util.Date

???java.sql.Date

public class Date

extends Date

This class extends the standard java.util.date class to represent SQL DATE types. It supports the JDBC escape syntax for
date values.

Constructors:

DATE
public Date(int year, int month, int day)

Create a Date object

Parameters: year — year-1900

month — 0 to 11

day — 1 to 31

DATE
public Date(long date)

Create a Date object using a milliseconds time value.

Parameters: date — milliseconds since January 1, 1970, 00:00:00 GMT

Methods:

TOSTRING
public String toString()

Convert a date to “YYYY-MM-DD” format.

Returns: a formatted date String

Overrides: toString in class Date

VALUEOF
public static Date valueOf(String s)

Convert a “YYYY-MM-DD” formatted string to a Date value.

Parameters: s — date in format “YYYY-MM-DD”

Returns: a Date

Class java.sql.DriverManager

java.lang.Object
???java.sql.DriverManager

public class DriverManager

extends Object

The DriverManager manages JDBC drivers and database connection requests. Although the drivers may be registered

and loaded with the class.forName() method, the DriverManager uses the “jdbc.drivers” property during its initialization
phase to find a suitable one for the connection which is requested.

See also: Driver, Connection

Methods:

DEREGISTERDRIVER
public static void deregisterDriver(Driver driver) throws SQLException

Remove a Driver from the DriverManager’s list. In the case of applets, only Drivers from the applet’s own classloader
may be deregistered.

Parameters: driver — a JDBC Driver

GETCONNECTION
public static synchronized Connection getConnection(String url, Properties info) throws SQLException

getConnection() returns a Connection object if the DriverManager is able to find an appropriate driver for the requested
connection.

Parameters: url — a database URL

info — a list of string tag/value pairs as connection arguments

Returns: a Connection to the database URL

GETCONNECTION
public static synchronized Connection getConnection(String url, String user, String password) throws
SQLException

getConnection() returns a Connection object if the DriverManager is able to find an appropriate driver for the requested
connection.

Parameters: url — a database URL

user — a database user’s login

password — the user’s password

Returns: a Connection to the database URL

GETCONNECTION
public static synchronized Connection getConnection(String url) throws SQLException

getConnection() returns a Connection object if the DriverManager is able to find an appropriate driver for the requested
connection.

Parameters: url — a database URL usually containing user and password strings

Returns: a Connection to the database URL

GETDRIVER
public static Driver getDriver(String url) throws SQLException

This method is used to locate a Driver that is able to connect to the database URL. The Driver is selected from the set of
registered Drivers.

Parameters: url — a database URL

Returns: a Driver able to connect to the URL

GETDRIVERS
public static Enumeration getDrivers()

Get an Enumeration of the JDBC drivers that are currently loaded.

Returns: the list of JDBC Driver’s loaded

GETLOGINTIMEOUT
public static int getLoginTimeout()

Get the maximum time in seconds that all drivers can wait when attempting to log in to a database.

Returns: the login time limit

GETLOGSTREAM
public static PrintStream getLogStream()

The DriverManager and JDBC drivers can give detailed information on what they do during a connection. This method
returns the PrintStream used by the DriverManager and the drivers.

Returns: the logging/tracing PrintStream or null if logging/tracing is disabled

PRINTLN
public static void println(Stringmessage)

Print a string to the current JDBC log stream.

Parameters: message — a log message

REGISTERDRIVER
public static synchronized void registerDriver(Driverdriver) throws SQLException

JDBC drivers must register themselves with the DriverManager in order to be candidates for subsequent connections.

Parameters: driver — a JDBC Driver

SETLOGINTIMEOUT
public static void setLoginTimeout(int seconds)

Set the maximum time in seconds that all drivers can wait when attempting to log in to a database.

Parameters: seconds — the login time limit

SETLOGSTREAM
public static void setLogStream(PrintStreamout)

The DriverManager and JDBC drivers can give detailed information on what they do during a connection. This method
sets the PrintStream used by the DriverManager and the drivers.

Parameters: out — the logging/tracing PrintStream or null to disable the logging/tracing facility

Class java.sql.DriverPropertyInfo

java.lang.Object
???java.sql.DriverPropertyInfo

public class DriverPropertyInfo

extends Object

The DriverPropertyInfo class is used to specify one tag name/value pair plus its description, possible choices for values,
and so forth. Use java.sql.Driver.getPropertyInfo() to obtain an array of DriverPropertyInfo objects. Note the public
variables of DriverPropertyInfo.

Variables:

CHOICES
public String choices[]

This is an array of the possible values for this property. If no choice is possible, then choices[] is null.

DESCRIPTION
public String description

A description of this property

NAME
public String name

The name of this property

REQUIRED
public boolean required

This variable is set to true if a value must be supplied for this property during Driver.connect. The property is optional in
the opposite case.

VALUE

public String value

This string contains the current value of the property. It may be null if no value is known.

Constructors:

DRIVERPROPERTYINFO
public DriverPropertyInfo(String name, String value)

Construct a DriverPropertyInfo object, giving it a name and a value.

Parameters: name — the name of the property

value — the value of the property

Class java.sql.Time

java.lang.Object
???java.util.Date

???java.sql.Time

public class Time

extends Date

This class extends the standard java.util.date class to represent SQL TIME types. Only hours, minutes, and seconds are
handled. It supports the JDBC escape syntax for time values.

Constructors:

TIME
public Time(int hour, int minute, int second)

Construct a Time object.

Parameters: hour — 0 to 23

minute — 0 to 59

second — 0 to 59

TIME
public Time(long time)

Construct a Time object using a milliseconds time value since January 1, 1970, 00:00:00 GMT.

Parameters: time — milliseconds since January 1, 1970, 00:00:00 GMT

Methods:

TOSTRING
public String toString()

Convert the time to “HH:MM:SS” format.

Returns: a “HH:MM:SS” formatted time String

Overrides: toString in class Date

VALUEOF
public static Time valueOf(String s)

Convert an “HH:MM:SS” formatted string to a Time value.

Parameters: s — time in “HH:MM:SS” format

Returns: a Time object

Class java.sql.Timestamp

java.lang.Object
???java.util.Date

???java.sql.Timestamp

public class Timestamp

extends Date

This class extends the standard java.util.date to represent SQL TIMESTAMP types. It supports subsecond precision and
the JDBC escape syntax for time values.

Constructors:

TIMESTAMP
public Timestamp(int year, int month, int date, int hour, int minute, int second, int nano)

Construct a Timestamp object.

Parameters: year — year-1900

month — 0 to 11

day — 1 to 31

hour — 0 to 23

minute — 0 to 59

second — 0 to 59

nano — 0 to 999,999,999

TIMESTAMP
public Timestamp(long time)

Construct a Timestamp object using a milliseconds time value.

Parameters: time — milliseconds since January 1, 1970, 00:00:00 GMT

Methods:

EQUALS
public boolean equals(Timestamp ts)

Compare the current Timestamp object with another.

Parameters: ts — the Timestamp value to compare with

Returns: true if they are equal

GETNANOS
public int getNanos()

Get the Timestamp’s nanosecond value.

Returns: the Timestamp’s nanosecond value

SETNANOS
public void setNanos(int n)

Set the Timestamp’s nanosecond value.

Parameters: n — the Timestamp’s nanosecond value

TOSTRING
public String toString()

Convert a Timestamp to “YYYY-MM-DD HH:MM:SS.F” format.

Returns: a “YYYY-MM-DD HH:MM:SS.F” formatted timestamp String

Overrides: toString in class Date

VALUEOF
public static Timestamp valueOf(String s)

Convert a “YYYY-MM-DD HH:MM:SS.F” formatted string to a Timestamp value.

Parameters: s — timestamp formatted as “YYYY-MM-DD HH:MM:SS.F”

Returns: a Timestamp

Class java.sql.Types

java.lang.Object
???java.sql.Types

public class Types

extends Object

The SQL types constants and their values are defined in this class. The constant values are equivalent to those defined by
XOPEN.

Variables:

BIGINT
public final static int BIGINT = -5

BINARY
public final static int BINARY = -2

BIT
public final static int BIT = -7

CHAR
public final static int CHAR = 1

DATE
public final static int DATE = 91

DECIMAL
public final static int DECIMAL = 3

DOUBLE
public final static int DOUBLE = 8

FLOAT
public final static int FLOAT = 6

INTEGER
public final static int INTEGER = 4

LONGVARCHAR
public final static int LONGVARCHAR = -4

LONGVARBINARY
public final static int LONGVARBINARY = -1

NULL
public final static int NULL = 0

NUMERIC
public final static int NUMERIC = 2

OTHER
public final static int OTHER

Use getObject() and setObject() to access columns of SQL type OTHER.

REAL
public final static int REAL = 7

SMALLINT
public final static int SMALLINT = 5

TIME
public final static int TIME = 92

TIMESTAMP
public final static int TIMESTAMP = 93

TINYINT
public final static int TINYINT = -6

VARBINARY
public final static int VARBINARY = -3

VARCHAR
public final static int VARCHAR = 12

Class java.sql.DataTruncation

java.lang.Object
???java.lang.Throwable

???java.lang.Exception
???java.sql.SQLException

???java.sql.SQLWarning
???java.sql.DataTruncation

public class DataTruncation

extends SQLWarning

If JDBC unexpectedly truncates a data value during a write, a DataTruncation exception is thrown. If this occurs during
a read, a DataTruncation warning is created. The SQLstate value is set to “01004” for a DataTruncation.

Constructors:

DATATRUNCATION
public DataTruncation(int index, boolean parameter, boolean read, int dataSize, int transferSize)

Construct a DataTruncation object with “01004” as SQLState and “Data truncation” as reason.

Parameters:

index — the index of the parameter or column value for which a truncation occurred

parameter — true if the truncation occurred when accessing a parameter

read — true if the truncation occurred during a database read

dataSize — the size of the data before being truncated

transferSize — the size after truncation

Methods:

GETDATASIZE
public int getDataSize()

Get the original data length in bytes.

Returns: the DataTruncation’s dataSize value or -1 if unknown

GETINDEX
public int getIndex()

Get the index of the column or parameter that was truncated.

Returns: the DataTruncation’s index value or -1 if unknown

GETPARAMETER
public boolean getParameter()

Checks whether the truncation occurred when reading or writing a parameter’s value.

Returns: true if the truncated value was a parameter or false if it was a column

GETREAD
public boolean getRead()

Checks whether the truncation occurred when reading a parameter or a column.

Returns: true if the value was truncated during a database read or false if the truncation occurred during a database write

GETTRANSFERSIZE
public int getTransferSize()

Get the number of bytes of data transferred.

Returns: the number of bytes of data transferred or -1 if unknown

Class java.sql.SQLException

java.lang.Object
???java.lang.Throwable

???java.lang.Exception
???java.sql.SQLException

public class SQLException

extends Exception

This type of exception is thrown when database access errors happen. The SQLException supplies details in order to
discover the reason why it was thrown. Several methods exist to obtain such information. Note that SQLExceptions are
chained together.

Constructors:

SQLEXCEPTION
public SQLException(String reason, String SQLState, int vendorCode)

Create a SQLException object providing a reason, an XOPEN SQLState, and a vendor code.

Parameters: reason — a short message for this exception

SQLState — an XOPEN code to identify this exception

vendorCode — a database vendor exception code

SQLEXCEPTION
public SQLException(String reason, String SQLState)

Create a SQLException object providing a reason and an XOPEN SQLState. The vendorCode is set to 0.

Parameters: reason — a short message for this exception

SQLState — an XOPEN code to identify this exception

SQLEXCEPTION
public SQLException(String reason)

Create a SQLException object providing a reason. The SQLState is set to null and the vendorCode is set to 0.

Parameters: reason — a short message for this exception

SQLEXCEPTION
public SQLException()

Create a SQLException object without providing additional information. The message and the SQLState are set to null
and the vendorCode is set to 0.

Methods:

GETERRORCODE
public int getErrorCode()

Get the vendor code for this exception.

Returns: the vendorCode value for this exception

GETNEXTEXCEPTION
public SQLException getNextException()

Get the exception chained to this one.

Returns: the next SQLException

GETSQLSTATE
public String getSQLState()

Get the SQLState for this exception.

Returns: the SQLState value for this exception

SETNEXTEXCEPTION
public synchronized void setNextException(SQLException ex)

Add an SQLException to the end of the chain of SQLExceptions.

Parameters: ex — a new SQLException

Class java.sql.SQLWarning

java.lang.Object
???java.lang.Throwable

???java.lang.Exception
???java.sql.SQLException

???java.sql.SQLWarning

public class SQLWarning

extends SQLException

SQLWarnings happen when database access warnings occur. The SQLWarnings are chained together and do not cause
an exception to be thrown. It supplies details in order to discover the reason why it was created. Several methods exist to

obtain such information.

See also: getWarnings

Constructors:

SQLWARNING
public SQLWarning(String reason, String SQLstate, int vendorCode)

Create a SQLWarning object providing a reason, an XOPEN SQLState, and a vendor code.

Parameters: reason — a short message for this warning

SQLState — an XOPEN code to identify this warning

vendorCode — a database vendor warning code

SQLWARNING
public SQLWarning(String reason, String SQLstate)

Create a SQLWarning object providing a reason and an XOPEN SQLState. The vendor code is set to 0.

Parameters: reason — a short message for this warning

SQLState — an XOPEN code to identify this warning

SQLWARNING
public SQLWarning(String reason)

Create a SQLWarning object providing a reason. The XOPEN SQLState is set to null and the vendor code is set to 0.

Parameters: reason — a short message for this warning

SQLState — an XOPEN code to identify this warning

SQLWARNING
public SQLWarning()

Create a SQLWarning object without providing additional information. The reason and XOPEN SQLState are set to null
and the vendor code is set to 0.

Methods:

GETNEXTWARNING
public SQLWarning getNextWarning()

Get the warning chained to this one.

Returns: the next SQLWarning

SETNEXTWARNING
public void setNextWarning(SQLWarning w)

Add a SQLWarning to the end of the chain of SQLWarnings.

Parameters: w — a new SQLWarning

Table of Contents

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Table of Contents

Appendix A
JDBC Products and Drivers

The best place to go to when looking for specific Java Database Connectivity (JDBC) driver implementations is Javasoft,
where the JDBC team frequently updates a list of JDBC driver vendors.

Javasoft, Inc., http://splash.javasoft.com/jdbc/

Product name: JDBC API

Web site: http://www.javasoft.com/jdbc

E-mail: java@java.sun.com

Address: 2550 Garcia Avenue Mountain View, CA 94043-1100

Phone: 415-960-1300

Fax: 415-969-9131

The latest version of JDBC is available from Javasoft as well.

Table A-1 is a list of JDBC driver vendors listed according to the database management system (DBMS) they support
and the type of JDBC driver implementation they develop:

• Type 1 is a JDBC-ODBC Bridge. It uses native, non-Java libraries and is platform-dependent.
• Type 2 is native- API, partly-Java. It uses native code too.
• Type 3 is a net-protocol all-Java driver but needs a middleware net server between the client and the
DBMS.
• Type 4 is a native-protocol all-Java driver. It directly connects to the DBMS and is the most portable JDBC
solution. It is the best solution for projects which have to be compliant with the 100 percent Pure Java initiative.

Table A-1JDBC DRIVER VENDORS

DBMS Type 1 Type 2 Type 3 Type 4

Adabas SAS/ACCESS

DB2 IBM IBM, Intersolv

DMSII Asgard

Essentia Intersoft

Informix Agave, IDS, I-
Kinetics,Intersolv,
OpenLink, SCO

SAS/ACCESS

Ingres Caribou, Intersolv,
OpenLink, SCO

SAS/ACCESS

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://splash.javasoft.com/jdbc/
http://www.javasoft.com/jdbc/
http://www.itknowledge.com/reference/standard/0764531441/java@java.sun.com

InterBase SCO Borland

miniSQL Imaginary

Oracle Intersolv, WebLogic Agave, IDS, I-
Kinetics, Intersolv,
OpenLink, SCO,
Symantec

SAS/ACCESS

Postgress OpenLink

SAS SAS

Sybase Intersolv, WebLogic Agave, IDS, I-
Kinetics, Intersolv,
OpenLink, SCO,
Sybase, Symantec

Connect SW, Sybase

SQL Server WebLogic IDS, Intersolv,
OpenLink, Symantec

Connect SW

Unify OpenLink

Watcom Sybase, Symantec Sybase

Yard SQL Yard Software

via ODBC JavaSoft Agave, DataRamp,
IDS, I-Kinetics,
StormCloud,
Symantec, Visigenic,
WebLogic

As of the writing of this book, these companies endorsed the JDBC API and are building JDBC compliant products,
including JDBC drivers:

Agave Software Design

Product type: Middleware

Product name: JDBC Netserver

Web site: http://www.agave.com

E-mail: info@agave.com

Address: 720 Avenue F, Suite 104 Plano, TX 75074

Phone: 972-424-6662

Fax: 972-424-6662

Borland International, Inc.

Product type: Driver, middleware

Product name: InterClient

Web site: http://www.borland.com

E-mail: customer-service@borland.com

Address: 100 Borland Way Scotts Valley, CA 95066-3249

Phone: 408-431-1000

Fax: 408-431-1000

Bulletproof Corporation

Product type: Driver, ODBC middleware

http://www.agave.com/
http://www.itknowledge.com/reference/standard/0764531441/info@agave.com
http://www.borland.com/
http://www.itknowledge.com/reference/standard/0764531441/customer-service@borland.com

Product name: JAGG

Web site: http://bulletproof.com/jagg

E-mail: support@bulletproof.com

Address: 15732 Los Gatos Blvd., Suite 525 Los Gatos, CA 95032

Phone: 408-395-5524

Fax: 408-395-6026

Caribou Lake Software

Product type: Various

Product name: SQL Runner, JSQL/Ingres

Web site: http://www.cariboulake.com

E-mail: info@cariboulake.com, sales@cariboulake.com

Centura Software Corporation

Product type: DBMS

Product Name: Centura

Web site: http://www.centurasoft.com

E-mail: info_usa@centurasoft.com

Address: 1060 Marsh Road Menlo Park, CA 94025

Phone: 800-444-8782

Connect Software, Inc.

Product type: Premier 100 percent pure Java Type 4 JDBC drivers, connecting directly to major
Relational DBMSs, including Sybase and Microsoft SQL Server

Product name: Connect JDBC Driver

Web site: http://www.connectsw.com

E-mail: info@connectsw.com

Address: 81 Lansing Street, Suite 411 San Francisco, CA 94105

Phone: 415-710-1544

Fax: 415-543-6695

Cyber SQL Corporation

Product type: Database-oriented Java class library

Product name: ActiveWeb

Web site: http://www.cybersql.com

E-mail: feedback@www.cybersql.com

DataRamp, Inc.

Product type: ODBC pipeline

Product name: DataRamp

Web site: http://dataramp.com

E-mail: sales@dataramp.com

http://bulletproof.com/jagg/
http://www.itknowledge.com/reference/standard/0764531441/support@bulletproof.com
http://www.cariboulake.com/
http://www.itknowledge.com/reference/standard/0764531441/info@cariboulake.com, sales@cariboulake.com
http://www.centurasoft.com/
http://www.itknowledge.com/reference/standard/0764531441/info_usa@centurasoft.com
http://www.connectsw.com/
http://www.itknowledge.com/reference/standard/0764531441/info@connectsw.com
http://www.cybersql.com/
http://www.itknowledge.com/reference/standard/0764531441/feedback@www.cybersql.com
http://dataramp.com/
http://www.itknowledge.com/reference/standard/0764531441/sales@dataramp.com

Address: 25 Burlington Mall Road Burlington, MA 01803

Phone: 616-273-3772

Fax: 617-270-9169

Dharma Systems, Inc.

Product type: Various

Product name: ODBC SQL

Web site: http://www.dharmas.com

E-mail: info@dharmas.com

Address: 15 Trafalgar Square Nashua, NH 03063

Phone: 603-886-1400

Fax: 603-883-6904

Esker, Inc.

Product type: Various

Web site: http://www.esker.com, http://www.esker.fr

E-mail: info@esker.com, info@esker.fr

Address: 350 Sansome Street, Suite 210 San Francisco, CA 94104

Phone: 415-675-7771

Fax: 415-675-7775

GWE Technologies

Product type: DBMS, 100 percent Java JDBC driver

Web site: http://www.gwe.co.uk/java/jdbc

E-mail: gwe@wales.com

Address: Llys Y Fedwen, Park Menai, Bangor, North Wales, LL57 4BF, UK

Phone: +44-(0)-1248-671001

Fax: +44-(0)-1248-671102

I-Kinetics

Product type: 100 percent pure Java JDBC Common Object Request Broker Archetecture (CORBA)-
based driver

Product name: OPENjdbc

Web site: http://www.i-kinetics.com

E-mail: info@i-kinetics.com

Address: 17 New England Executive Park Burlington, MA 01803

Phone: 617-270-1300

Fax: 617-270-4979

IBM Corporation

Product type: Various, DBMS, connectivity tools

Product name: DB2, Net.Data

Web site: http://www.software.ibm.com/data/db2/ index.html

http://www.dharmas.com/
http://www.itknowledge.com/reference/standard/0764531441/info@dharmas.com
http://www.esker.com, http//www.esker.fr
http://www.itknowledge.com/reference/standard/0764531441/info@esker.com, info@esker.fr
http://www.gwe.co.uk/java/jdbc/
http://www.itknowledge.com/reference/standard/0764531441/gwe@wales.com
http://www.i-kinetics.com/
http://www.itknowledge.com/reference/standard/0764531441/info@i-kinetics.com
http://www.software.ibm.com/data/db2/ index.html

E-mail: askibm@info.ibm.com

Address: Old Orchard Road Armonk, NY 10504

Phone: 520-574-4600

IDS Software

Product type: Server, Middleware, Web/database integration

Product name: IDS Server, IDS JDBC Driver

Web site: http://www.idssoftware.com

E-mail: info@idssoftware.com

Address: 11309 Elmcrest Street El Monte, CA 91732

Phone: 818-401-2648

Fax: Unknown

Imaginary

Product type: 100 percent Java JDBC driver for mSQL

Product name: mSQL-JDBC

Web site: http://www.imaginary.com/~borg/Java

E-mail: borg@imaginary.com

Information Builders

Product type: Various, connectivity tools

Product name: WebFOCUS

Web site: http://www.ibi.com

E-mail: info@ibi.com

Address: 1250 Broadway New York, NY 10001-3782

Phone: 212-279-2382

Fax: 212-967-6406

Informix Software, Inc.

Product type: DBMS, connectivity tools

Product name: Informix Webkits

Web site: http://www.informix.com

E-mail: info@informix.com

Address: 4100 Bohannon Drive Menlo Park, CA 94025

Phone: 415-926-6300

Intersoft Argentina

Product type: Various, DBMS for Linux, JDBC driver

Product name: Essentia-JDBC

Web site: http://www.inter-soft.com/eng/products/system/ essentia/

E-mail: info@inter-soft.com

Address: Calle Brisas del Prado, Residencias Bucare, Piso 8D Terrazas del club Hipico, Caracas,
Venezuela

http://www.itknowledge.com/reference/standard/0764531441/askibm@info.ibm.com
http://www.idssoftware.com/
http://www.itknowledge.com/reference/standard/0764531441/info@idssoftware.com
http://www.imaginary.com/~borg/java/
http://www.itknowledge.com/reference/standard/0764531441/borg@imaginary.com
http://www.ibi.com/
http://www.itknowledge.com/reference/standard/0764531441/info@ibi.com
http://www.informix.com/
http://www.itknowledge.com/reference/standard/0764531441/info@informix.com
http://www.inter-soft.com/eng/products/system/ essentia/
http://www.itknowledge.com/reference/standard/0764531441/info@inter-soft.com

Phone: +58-2-978-4921

Fax: +58-16-38-3114

Intersolv

Product type: Connectivity tools, JDBC-ODBC bridge

Product name: JDBC-ODBC bridge

Web site: http://www.intersolv.com

E-mail: jdbc_answerline@intersolv.com

Address: 9420 Key West Avenue Rockville, MD 20850

Phone: 800-547-4000

Fax: 301-838-5064

Ken North Seminars

Product type: Miscellaneous

Product name: SQL API Benchmark Kit

Web site: http://ourworld.compuserve.com/homepages/ Ken_North

Net Dynamics

Product type: Web/Database development tools, N-Tier solutions

Product name: NetDynamics

Web site: http://www.netdynamics.com/press/reviews/jdbcfinal.html

E-mail: info@netdynamics.com

Address: 185 Constitution Drive Menlo Park, CA 94025

Phone: 415-462-7600

Fax: 415-617-5920

O2 Technology

Product type: ODBMS, connectivity tools, Java-relational bindings

Product name: Java Relational Binding API

Web site: http://www.o2tech.com

E-mail: o2info@o2tech.com

Address: 3600 West Bayshore Road, Suite 106 Palo Alto, CA 94303

Phone: 415-842-7000

Fax: 415-842-7001

Object Design, Inc.

Product type: ODBMS, connectivity tools, Java object persistence

Product name: ObjectStore PSE and ObjectStore PSE for Java

Web site: http://www.odi.com

E-mail: info@odi.com

Address: 25 Mall Road Burlington, MA 01803

Phone: 617-674-5000

Fax: 617-674-5010

http://www.intersolv.com/
http://www.itknowledge.com/reference/standard/0764531441/jdbc_answerline@intersolv.com
http://ourworld.compuserve.com/homepages/ ken_north/
http://www.netdynamics.com/press/reviews/jdbcfinal.html
http://www.itknowledge.com/reference/standard/0764531441/info@netdynamics.com
http://www.o2tech.com/
http://www.itknowledge.com/reference/standard/0764531441/o2info@o2tech.com
http://www.odi.com/
http://www.itknowledge.com/reference/standard/0764531441/info@odi.com

Open Horizon, Inc.

Product type: Middleware, secure connectivity

Product name: Ambrosia, Connection

Web site: http://www.openhorizon.com

E-mail: info@openhorizon.com

Address: 601 Gateway Boulevard, Suite 800 South San Francisco, CA 94080

Phone: 415-869-2200

Fax: 415-869-2201

OpenLink Software, Inc.

Product type: Middleware

Product name: OpenLink ODBC, OpenLink UDBC

Web site: http://www.openlinksw.com

E-mail: oiyoha@openlink.co.uk

Address: 10 Burlington Mall Rd., Suite 265Burlington, MA 01803

Phone: 617-273-0900

Fax: 617-229-8030

Oracle Corporation

Product type: DBMS, connectivity tools

Product name: Universal Server, WebServer, PowerBrowser

Web site: http://www.oracle.com

E-mail: info@oracle.com

Address: 500 Oracle Parkway Redwood Shores, CA 94065

Phone: 415-506-7000

Fax: 415-506-7200

Persistence Software, Inc.

Product type: Object-Relational mapping

Product name: Persistence, LiveObjectCache for CORBA

Web site: http://www.persistence.com

E-mail: info@persistence.com

Address: 1720 S. Amphlett Blvd., Suite 300 San Mateo, CA 94402

Phone: 415-372-3600

Fax: 415-341-8432

Presence Information Design

Product type: JDBC driver for Oracle

Product name: PB&J

Web site: http://cloud9.presence.com/pbj

E-mail: pbj@presence.com

Phone: 818-405-9971

http://www.openhorizon.com/
http://www.openlinksw.com/
http://www.oracle.com/
http://www.itknowledge.com/reference/standard/0764531441/info@oracle.com
http://www.persistence.com/
http://www.itknowledge.com/reference/standard/0764531441/info@persistence.com
http://cloud9.presence.com/pbj/
http://www.itknowledge.com/reference/standard/0764531441/pbj@presence.com

Fax: 818-405-1817

PRO-C, Inc.

Product type: Java code generator

Product name: WinGEN and WinGEN Lite for Java

Web site: http://www.pro-c.com

E-mail: sales@pro-c.com

Address: 1st National Plaza, 100 W. Kennedy Blvd. Tampa, FL 33602-5832

Phone: 813-227-7762

Fax: 813-223-1562

Recital Corporation

Product type: Various

Product name: Kaleidoscope and JDBC drivers

Web site: http://www.recital.com

E-mail: info@recital.com

Address: 85 Constitution Lane Danvers, MA 01923

Phone: 508-750-1066

Fax: 508-762-0119

RogueWave Software Inc.

Product type: Various class libraries

Product name: JDBTools

Web site: http://www.roguewave.com

E-mail: sales@roguewave.com, international_sales@roguewave.com

Address: 850 S.W. 35th Street Corvallis, OR 97333

Phone: 541-754-5010

Fax: 541-757-6650

Sanga Corporation

Product type: Web/Database connectivity components

Product name: Sanga Pages

Web site: http://www.sangacorp.com/products.html

E-mail: info@sangacorp.com

Address: 24 New England Executive Park 2nd Floor Burlington, MA 01803

Phone: 617-272-8500

Fax: 617-272-9800

SAS Institute, Inc.

Product type: Connectivity

Product name: SHARE*NET Driver for JDBC

Web site: http://www.sas.com

http://www.pro-c.com/
http://www.itknowledge.com/reference/standard/0764531441/sales@pro-c.com
http://www.recital.com/
http://www.itknowledge.com/reference/standard/0764531441/info@recital.com
http://www.roguewave.com/
http://www.itknowledge.com/reference/standard/0764531441/sales@roguewave.com, international_sales@roguewave.com
http://www.sangacorp.com/products.html
http://www.itknowledge.com/reference/standard/0764531441/info@sangacorp.com
http://www.sas.com/

E-mail: webwrk-l@vm.sas.com

Address: SAS Campus Drive Cary, NC 27513

Phone: 919-677-8000

Fax: 919-677-8123

The Santa Cruz Operation, Inc.

Product type: Various, middleware

Product name: SQL-Retriever

Web site: http://www.vision.sco.com/brochure/sqlretriever.html

Address: 400 Encinal Street, PO Box 1900 Santa Cruz, CA 95061-1900

Phone: 408-425-7222

Fax: 408-458-4227

StormCloud Development Corporation

Product type: Web/Database development environment

Product name: WebDBC

Web site: http://www.stormcloud.com

E-mail: info@stormcloud.com

Address: 316 Occidental Avenue South, Suite 406 Seattle, WA 98104

Phone: 206-812-0177

Fax: 206-812-0170

Sybase, Inc.

Product type: DBMS and connectivity tools

Product name: SQL Server 10, System XI, Web.SQL

Web site: http://www.sybase.com

E-mail: sales@sybase.com

Address: 6475 Christie Avenue Emeryville, CA 94608

Phone: 510-922-3500

Fax: 510-658-9441

Symantec

Product type: Java development tool

Product name: Symantec Cafe

Web site: http://cafe.symantec.com/cafe/

Address: 10201 Torre Avenue Cupertino, CA 95014-2132

Phone: 408-253-9600

Fax: 408-253-3968

Thought, Inc.

Product type: Middleware, secure connectivity

Product name: CocoBase

Web site: http://www.thoughtinc.com

http://www.itknowledge.com/reference/standard/0764531441/webwrk-l@vm.sas.com
http://www.vision.sco.com/brochure/sqlretriever.html
http://www.stormcloud.com/
http://www.itknowledge.com/reference/standard/0764531441/info@stormcloud.com
http://www.sybase.com/
http://cafe.symantec.com/cafe/
http://www.thoughtinc.com/

E-mail: info@thoughtinc.com

Address: 2222 Leavenworth Street, Suite 304 San Francisco, CA 94133

Phone: 415-928-4224

Fax: 415-567-9945

Thunderstone

Product type: Information retrieval

Product name: Metamorph, Texis

Web site: http://www.thunderstone.com

E-mail: info@thunderstone.com

Address: 11115 Edgewater Drive Cleveland, OH 44102

Phone: 216-631-8544

Fax: 216-281-0828

Visigenic Software, Inc.

Product type: Middleware

Product name: VisiBroker for Java, VisiChannel

Web site: http://www.visigenic.com

E-mail: info@visigenic.com

Address: 951 Mariner’s Island Blvd., Suite 120 San Mateo, CA 94404

Phone: 415-286-1900

Fax: 415-286-2464

Weblogic, Inc.

Product type: Pure Java JDBC drivers, middleware

Product name: jdbcKona, jdbcKona/T3, dbKona, htmlKona

Web site: http://www.weblogic.com

E-mail: info@weblogic.com

Address: 180 Montgomery Street, Suite 180 San Francisco, CA 94104

Phone: 415-394-8616

Fax: 415-394-8619

XDB Systems, Inc.

Product type: Web/Database connectivity tools

Product name: JetConnect, JetAssist, HeatShield

Web site: http://www.xdb.com

E-mail: moreinfo@xdb.com

Address: 9861 Broken Land Parkway Columbia, MD 21046

Phone: 410-312-9300

Fax: 410-312-9505

YARD Software GmbH

Product type: JDBC driver for YARD DBMS

http://www.itknowledge.com/reference/standard/0764531441/info@thoughtinc.com
http://www.thunderstone.com/
http://www.visigenic.com/
http://www.itknowledge.com/reference/standard/0764531441/info@visigenic.com
http://www.weblogic.com/
http://www.itknowledge.com/reference/standard/0764531441/info@weblogic.com
http://www.xdb.com/
http://www.itknowledge.com/reference/standard/0764531441/moreinfo@xdb.com

Product name: YARD-JDBC

Web site: http://www.yard.de

E-mail: info@yard.de

Address: Wikingerstr. 18 51107 Köln, Germany

Phone: +49-221-98664-0

Fax: +49-221-98664-99

Other organizations and companies make specifications or build Java versions of database-oriented tools, distributed
object request brokers, or client-server tools and components. In this book we mentioned:

Object Database Management Group

Web site: http://www.odmg.org

E-mail: info@odmg.org

Address: 14041 Burnhaven Drive, Suite 105 Burnsville, MN 55337

Phone: 612-953-7250

Fax: 612-397-7146

Marimba, Inc.

Product type: Java development and connectivity tools

Product name: Bongo, Castanet

Web site: http://www.marimba.com

E-mail: info@marimba.com

Address: 445 Sherman Avenue Palo Alto, CA 94306

Phone: 415-328-JAVA

Fax: 415-328-5295

Platinum Technology, Inc.

Product type: Java OO CASE tool

Product name: Paradigm Plus

Web site: http://www.platinum.com

E-mail: info@platinum.com

Phone: 630-620-5000

Fax: 800-442-4230

Trifox, Inc.

Product type: Middleware, TP Monitor

Product name: Vortex for Java

Web site: http://www.trifox.com/vtxjava.html

E-mail: info@trifox.com

Address: 851 E. Hamilton Avenue #230 Campbell, CA 95008

Phone: 408-369-2300

Fax: 408-369-2333

http://www.yard.de/
http://www.itknowledge.com/reference/standard/0764531441/info@yard.de
http://www.odmg.org/
http://www.itknowledge.com/reference/standard/0764531441/info@odmg.org
http://www.marimba.com/
http://www.itknowledge.com/reference/standard/0764531441/info@marimba.com
http://www.platinum.com/
http://www.itknowledge.com/reference/standard/0764531441/info@platinum.com
http://www.trifox.com/vtxjava.html
http://www.itknowledge.com/reference/standard/0764531441/info@trifox.com

Table of Contents

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Table of Contents

Appendix B
Links for Additional Information

For More Information About SQL and DBMSs

Standards:

Database Language—SQL with Integrity Enhancement, ANSI, 1989 ANSI X3.135-1989

X/Open and SQL Access Group SQL CAE specification, 1992

Database Language—SQL: ANSI X3H2 and ISO/IEC JTC1/SC21/WG3 9075:1992 (SQL-92)

For More Information About Objects and DBMSs

Standards:

Object Database Management Group: ODMG’s specifications, http://www.odmg.org

Object Database Management Group: ODMG Java Binding, http://www.odmg.org/java.html

Object Management Group: CORBA 2.0 Architecture and Specification, http://www.omg.org

Table of Contents

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.odmg.org/
http://www.odmg.org/java.html
http://www.omg.org/

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Table of Contents

Appendix C
Frequently Asked Questions

The following are frequently asked questions about JDBC.

Q: Is it possible to access databases with JDBC from an applet?

A: Yes, it is possible provided that the driver in use is a 100-percent Java driver. The driver is called a native-protocol
all-Java driver. The problem with a native-API partly-Java driver or a protocol bridge is that it uses native libraries to
connect to the DBMS and interact with it. It is not allowed to call native libraries from an applet for security reasons.

Q: I use Solaris 2.4. Can I use the JDBC-ODBC bridge to connect to a Sybase database?

A: Yes, provided that you have an appropriate ODBC driver manager and driver for your platform. These components
have nothing to do with Java and are available on the market. This answer is true for a variety of Unix platforms and
DBMSs.

Q: May I run my WWW server and DBMS server on different machines?

A: If the goal is to let an applet communicate with a database, the database should be located on the same server the
applet came from. For security reasons an applet cannot open sockets to arbitrary hosts. However, it is possible to place
the DBMS elsewhere provided that a middle tier is placed on the WWW server machine. This tier would forward calls to
the DBMS.

Q: What is involved with installation on the database server side?

A: Nothing special. You just need the appropriate DBMS connectivity software that allows clients to connect to it. The
client’s JDBC driver should be compatible with this software.

Q: My CLASSPATH environment variable points to the .java files, but the code does not compile. What’s wrong?

A: The CLASSPATH environment variable should point to all the .class files that the Java application, applet, or servlet
will use.

Q: When I try to use a JDBC-ODBC bridge, I always get this SQLException:

SQLState: IM002

Message: [Microsoft][ODBC Driver Manager] Data Source Name not found

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

Vendor: 0

A: The sub-subprotocol field of the URL is the Data Source Name as defined within the ODBC Driver Manager. This
only works with the 32-bit version of the driver manager.

Q: I use a native driver but I get errors related to a missing shared library. What can I do?

A: Files such as libXXX.so should be reachable by following the LD_LIBRARY_PATH environment variable. Correct
its value to make the path point to where the files are located and try again.

Q: I use a native driver but I get errors saying that it is unable to load a DLL. What’s wrong?

A: Files such as DLLs should be located in your windows\system directory or where they are reachable by following the
PATH. Correct this and try again.

Q: My browser won’t launch my applet when reading from a local file.

A: Browsers are usually able to launch applets that come from the local file system but some of them won’t open socket
connections to connect to a remote server for security reasons. JDBC Drivers use sockets to establish connections on
TCP/IP networks.

Q: I am not able to call database metadata methods. I get an error message that says “Driver not capable.”
What’s wrong?

A: When the driver is not capable, it may be because it does not support this function or because the DBMS does not
support the function. You should not use database metadata in this case.

Table of Contents

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Table of Contents

Appendix D
What’s on the CD-ROM

The CD-ROM contains the source code for all examples, JDBC products, and the common Java utilities such as the
JavaSoft, Inc. JDK. Refer to the specific product documentation for information about installing on your platform. The
CD_ROM contains the following:

• ReadMe.txt Description of the products contained on the CD-ROM.
• legal.txt Java™ Binary Code License.

Source Code Files

• src/fragments/ This directory contains the source code for the code fragments in this book.
• src/examples/ This directory contains the complete examples explained in this book.
• ./isql Isql is a tool for issuing SQL statements interactively. The applet and application are included.
• ./airlines JDBC Airlines illustrates a real-world applet. Copyright © 1996–1997 by Connect Software, Inc.
For 100% Java drivers, see http://www.connectsw.com.
• ./blobs These are command-line tools to insert and extract batches of multimedia files (.GIF, .WAV, .MPEG, .
AU, .WRL, ...) in/from database tables.
• ./bank The “Welcome to the Bank of Java” applet illustrates database transaction isolation.
• /jexplore JExplorer features lots of graphical tools to navigate a database using JDBC metadata interfaces.
• ./rmi The “Best Cars In The World” example illustrates how to develop with JDBC and the Remote Method
Invocation of Java. (Portions Copyright © 1997 De Munck Mediaware)

JDBC Products

• jdbc/jdbc This directory contains the JDBC classes of JavaSoft, Inc. in ZIP and tar.Z formats.
• jdbc/jdbcodbc/ This directory contains the JDBC-ODBC bridge of JavaSoft, Inc. and Intersolv, Inc. in ZIP
and tar.Z formats.
• jdbc/drivers/ This directory contains George Reese’s mSQL-JDBC driver for miniSQL based on Darryl
Collins’s mSQL-Java.
• dbms/minisql/ This directory contains the miniSQL database management system from Hughes Technologies
Ltd. in tar.gz formats.

Java Utilities

• java/jdk/ This directory contains the Java Development Kit 1.1.1 of JavaSoft, Inc. The files are self-extracting
archives.
• java/bongo/ This directory contains a demo version of Bongo 1.0 of Marimba, Inc.

Other Tools

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.connectsw.com/

• misc/winzip/ This directory contains a shareware evaluation version of WinZip for Windows 95, Windows
NT and Windows 3.1. WinZipTM is a registred trademark of Nico Mak Computing, Inc. (Copyright © 1997
Nico Mak Computing, Inc.)

Table of Contents

 JDBC: Java Database Connectivity
by Bernard Van Haecke
IDG Books, IDG Books Worldwide, Inc.
ISBN: 0764531441 Pub
Date: 10/01/97 Buy It

Table of Contents

Index

Numbers

2-tier client-server architecture, 10–11
3-tier approach, 147–152

CORBA software, 152
Java RMI (remote method invocation), 151
Joe, 152
object persistency, 149–151
overview, 147–149

3-tier client-server architecture, 11–12
100% versus non-100% Java, 158

A

acceptsURL() method, 100, 303
Account.java class, 211–215
Agave Software Design, 341
airlines applet. See JDBC Airlines applet
Airplet.java class, 178–182
AirportChoice.java class, 185–186
Airport.java class, 182–185
allProceduresAreCallable() method, 272
allTablesAreSelectable() method, 272
ANSI escape syntax, 106
APIs. See JDBC API; JDBC Driver API
applets

database access using, 355
ISQL client example, 169–199
JavaBank example, 206–220
JDBC Airlines example, 176–199
launching from local file, 356
security issues, 156
untrusted, 40–41, 156
See also applications; examples

application programming interfaces (APIs). See JDBC API; JDBC Driver API
applications

“business logic” of, 26–27
car factory example, 240–255
ISQL client example, 163–169
Java database explorer example, 221–240
JDBC component, 21
logins for, 155
ODBC component, 17

http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28
http://www.digitalguru.com/dgstore/product.asp?isbn=0764531441&ac%5Fid=28

security issues, 155–156
stand-alone applications, 41–42, 155–156
Transaction Processing (TP) monitor, 6–7
untrusted applets versus traditional applications, 40–41
See also applets; examples

assigning logins, 155

B

bank applet. See JavaBank applet
batch commands

retrieving BLOBs, 202–203
sending BLOBs, 200

BESTROWNOTPSEUDO variable, 268
BESTROWPSEUDO variable, 268
BESTROWSESSION variable, 268
BESTROWTEMPORARY variable, 268
BESTROWTRANSACTION variable, 268
BESTROWUNKNOWN variable, 268
BIGINT variable, 332
Binary Large Objects. See BLOBs
binary types, mapping, 104
BINARY variable, 332
BIT variable, 332
BLOBs

retrieving, 82–84, 202–205
sending, 63, 199–202
sending using dynamic SQL, 128–129

Borland International, 341
bridges

connecting to Sybase databases, 355
JDBC drivers, 23
SQLExceptions, 356

building SQL statements, 58–59
Bulletproof Corp., 341
“business logic” of applications, 26–27

C

C language, Java compared to, 3–4
C++ language, Java compared to, 3–4
Call Level Interface (CLI)

ODBC standard, 16–18
SAG-X/Open standard, 15–16

callable statements, 119–124
accessing parameters, 123–124
example, 124
IN parameters, 120–122, 124
multiple result types, 120–121
OUT parameters, 120–121, 122–124
overview, 119–121
setting parameters, 121–123

CallableStatement class, 120
CallableStatement interface, 259–263

methods, 121–124, 260–263
overview, 39, 259

cancel() method, 322
for results, 78–79

canceling results, 78–79
car factory example, 240–255

CarFactoryImpl.java class, 247–249
CarFactory.java class, 247
CarImpl.java class, 245–246
Car.java class, 245
CarSales.java class, 250–254
CarSupplierServer.java class, 254–255
client side, 243–244
database side, 241–242
overview, 240–241
RMI server side, 242–243

CarFactoryImpl.java class, 247–249
CarFactory.java class, 247
Caribou Lake Software, 342
CarImpl.java class, 245–246
Car.java class, 245
CarSales.java class, 250–254
CarSupplierServer.java class, 254–255
CASE (Computer Aided Software Engineering) tool, 8
catalogs, 55
CD-ROM contents, 357–358
Centura Software, 342
CGI approach, 27–32
chained transaction mode, 110
CHAR variable, 333
characteristics of JDBC, 20–21
CHOICES variable, 329
classes

Java wrapper classes, 32–33
java.sql.DataTruncation, 334–335
java.sql.Date, 325–326
java.sql.DriverManager, 50–51, 52, 99–100, 326–328
java.sql.DriverPropertyInfo, 102, 329
java.sql.SQLException, 90–91, 335–336
java.sql.SQLWarning, 92–94, 337–338
java.sql.Time, 330
java.sql.Timestamp, 331–332
java.sql.Types, 332–333
making available, 46–47
subtrees, 46
See also specific classes

CLASSPATH environment variable, 46, 355
clearParameters() method, 122, 127, 305
clearWarnings() method, 264, 310, 322
CLI (Call Level Interface)

ODBC standard, 16–18
SAG-X/Open standard, 15–16

client-server architectures
three-tier, 11–12, 147–152
two-tier, 10–11

close() method
for connections, 53, 54, 264
for result sets, 79, 310–311
for SQL statements, 62–63, 322

closing
database connections, 53–54, 264

result sets, 79, 310–311
SQL statements, 62–63, 322

Codd, E. F., 9
ColumnLayout.java class, 186–188
COLUMNNONULLS variable, 268, 318
COLUMNNULLABLE variable, 269, 318
COLUMNNULLABLEUNKNOWN variable, 269, 318
columns

accessing, 71–72
accessing by column indexes, 72–73
accessing by column names, 73–74
getting number and label, 70–71
information using ResultSetMetaData interface, 139–140
properties, 86, 140

commit() method, 112, 264
Common Object Request Broker Architecture (CORBA) software, 152
compiling JDBC projects, 47
components

JDBC, 21–24
ODBC, 16–18

Computer Aided Software Engineering (CASE) tool, 8
connect() method, 303–304
Connect Software, 342
connection. See database connection
Connection interface, 263–267

methods, 52, 53–55, 111–112, 264–267
overview, 38, 263
variables, 263
See also database connection

constructors
DataTruncation class, 334
Date class, 325–326
DriverPropertyInfo class, 329
SQLException class, 335–336
SQLWarning class, 337–338
Time class, 330
Timestamp class, 331

converting data types, 103–106
conversions supported for getXXX() methods, 79–82
dynamically typed data insertion/update, 142–145
dynamically typed data retrieval, 141–142
mapping Java types to SQL, 105–106
mapping SQL types to Java, 103–105
type mapping tables, 104–106

CORBA (Common Object Request Broker Architecture) software, 152
count, for columns, 70–71
CREATE INDEX (SQL verb), 15
CREATE PROCEDURE (SQL verb), 15
CREATE TABLE (SQL verb)

JavaBank applet example, 219–220
overview, 13

createStatement() method, 58–59, 264
cursors, 113–117

examples, 115–117
operation theory, 114–115
overview, 113–114
result handling, 86–87

Cyber SQL Corp., 342

D

Data Definition Language (DDL), 219–220
data source

JDBC, 24
ODBC, 18

data truncation
DataTruncation class, 334–335
warnings, 94–96
when receiving data, 84–85
when sending data, 63–64

data types. See types
database connection

with applets, 355
basic steps, 56
closing, 53–54
Connection interface, 38, 263–267
declaring, 51
example, 56–57
JDBC database naming syntax, 48–49
JDBC drivers, 49–54
methods, 50–51
opening, 51–53
properties, 54–57
See also Connection interface

database explorer. See Java database explorer example
database management systems (DBMS)

choosing, 158–159
client-server architectures, 10–12
further information, 353
Java and, 9
ODBMS, 33
relational databases, 9–10, 159
servers, 355
standards, 12–18

database servers, 355
DatabaseMetaData interface, 129–139, 268–303

database limitation information, 133–134
database object information, 129, 134–139
“Driver not capable” message, 356
examples, 130–131, 134, 136–139
features supported, 131–133
methods, 129–139, 272–303
miscellaneous database information, 129–131
overview, 39, 129, 268
variables, 269–271

databases
client-server architectures, 10–12
DatabaseMetaData interface information, 138
independence, 157
Java integration issues, 25–26
JDBC naming syntax, 48–49
ODBC, 16–18
overview, 9
relational databases, 9–10
standards, 12–18

dataDefinitionCausesTransactionCommit() method, 272

dataDefinitionIgnoredInTransactions() method, 272
DataRamp, 342
DataTruncation() constructor, 334
DataTruncation class, 334–335
Date() constructors, 325–326
date

escape syntax, 107–108
scalar functions, 108

Date class, 325–326
DATE variable, 333
DBMS. See database management systems (DBMS)
DDL (Data Definition Language), 219–220
DECIMAL variable, 333
declaring connections, 51
DELETE FROM (SQL verb), 14
deletes, positioned, 115–116
deregisterDriver() method, 326
DESCRIPTION variable, 329
design issues

100versus non-100Java, 158
DBMS selection, 158–159
independence of databases, 157
Internet versus intranet, 153–154
latency, 155
replication, 154–155
security, 155–156
simultaneous users, 154–156

Dharma Systems, 342–343
dirty reads, isolation level, 110, 112
DLLs, 356
doesMaxRowSizeIncludeBlobs() method, 272
DOUBLE variable, 333
Driver interface, 303–304

methods, 100–102, 303–304
overview, 303
See also JDBC drivers

driver manager
JDBC, 21
message logging methods, 50–51
methods, 99–100
ODBC, 17–18
opening connections, 52

“Driver not capable” message, 356
DriverManager class, 326–328

connection creation methods, 52
message logging methods, 50–51
methods for obtaining information, 99–100
methods, summary, 326–328
overview, 38, 326
See also driver manager

DriverPropertyInfo() constructor, 329
DriverPropertyInfo class, 329

constructors, 329
members, 102
overview, 329
variables, 329

drivers
for applets, 355
Java native-protocol drivers versus ODBC, 42–43

JDBC, 22–24, 49–54, 339–351
native drivers, 356
ODBC, 18
table of vendors, 339–340
types, 339–340
See also Driver interface; driver manager; JDBC drivers

DROP TABLE (SQL verb), 13–14
dynamic data access, 140–145

dynamically typed data insertion/update, 142–145
dynamically typed data retrieval, 141–142
example, 221–240
overview, 140–141

dynamic SQL, 124–129
executing queries and retrieving results, 127–128
passing IN parameters, 127
sending BLOBs, 128–129
See also prepared statements

E

e-mail addresses for vendors, 339–351
equals() method, 331
errors and warnings, 90–96

data truncation, 94–96
SQLExceptions, 90–91, 335–336, 356
SQLWarnings, 92–94, 337–338

escape syntax, 106–109
form, 106
for outer joins, 109
for special characters, 109
for stored procedures, 106–107
for time/date, 107–108

Esker, 343
examples

callable statements, 124
car factory application, 240–255
cursors, 115–117
database connection, 56–57
database independence, 157
DatabaseMetaData interface, 130–131, 134, 136–139
dynamic database access, 221–240
ISQL client applet, 169–199
ISQL client application, 163–169
Java database explorer, 221–240
JavaBank applet, 206–220
JDBC Airlines applet, 176–199
log stream, 57
remote method invocation (RMI), 240–255
result handling, 87–89
ResultSetMetaData interface, 140
retrieving BLOBs, 202–205
sending BLOBs, 199–202
sending SQL statements, 66
transaction management, 113, 206–220

exceptions. See errors and warnings
execute() method, 61, 305, 322
executeQuery() method, 61–62, 67, 305, 323

executeUpdate() method, 61, 62, 67, 305, 323
executing queries, 60–62

F

FAQ, 355–356
findColumn() method, 86, 311
firewalls, 156
Flight.java class, 188–189
FlightsPanel.java class, 189–191
FlightsVector.java class, 191–192
FLOAT variable, 333
frequently asked questions, 355–356

G

getAsciiStream() methods, 311
getAutoClose() method, 53, 112, 264
getAutoCommit() method, 112, 264
getBestRowIdentifier() method, 272–273
getBigDecimal() methods, 260, 311–312
getBinaryStream() methods, 312
getBoolean() methods, 260, 312
getByte() methods, 260, 312–313
getBytes() methods, 260, 313
getCatalog() method, 55, 265
getCatalogCount() method, 319
getCatalogName() method, 318
getCatalogs() method, 273
getCatalogSeparator() method, 273
getCatalogTerm() method, 274
getColumnDisplaySize() method, 319
getColumnLabel() method, 319
getColumnName() method, 319
getColumnPrivileges() method, 275
getColumns() method, 274–275
getColumnType() method, 319
getColumnTypeName() method, 319
getConnection() methods, 51, 52–53, 327
getCrossReference() method, 276–277
getCursorName() method, 115, 313
getDatabaseProductName() method, 277
getDatabaseProductVersion() method, 277
getDataSize() method, 94, 334
getDate() methods, 260, 313
getDefaultTransactionIsolation() method, 278
getDouble() methods, 261, 314
getDriver() method, 327
getDriverMajorVersion() method, 278
getDriverMinorVersion() method, 278
getDriverName() method, 278
getDrivers() method, 327
getDriverVersion() method, 278
getErrorCode() method, 90, 92, 336
getExportedKeys() method, 278–280
getExtraNameCharacters() method, 280

getFloat() methods, 261, 314
getIdentifierQuoteString() method, 280
getImportedKeys() method, 280–283
getIndex() method, 94–95, 334
getInt() methods, 261, 314
getLoginTimeout() method, 100, 328
getLogStream() method, 50, 100, 328
getLong() methods, 261, 315
getMajorVersion() method, 100–101, 304
getMaxBinaryLiteralLength() method, 283
getMaxCatalogNameLength() method, 284
getMaxCharLiteralLength() method, 283
getMaxColumnNameLength() method, 283
getMaxColumnsInGroupBy() method, 283
getMaxColumnsInIndex() method, 283
getMaxColumnsInOrderBy() method, 283
getMaxColumnsInSelect() method, 283
getMaxColumnsInTable() method, 284
getMaxConnections() method, 284
getMaxCursorNameLength() method, 284
getMaxFieldSize() method

for result sets, 84
sending SQL statements, 63, 323

getMaxIndexLength() method, 284
getMaxProcedureNameLength() method, 284
getMaxRows() method, 85, 324
getMaxRowSize() method, 284
getMaxSchemaNameLength() method, 284
getMaxStatementLength() method, 285
getMaxStatements() method, 285
getMaxTableNameLength() method, 285
getMaxTablesInSelect() method, 285
getMaxUserNameLength() method, 285
getMessage() method, 90
getMetaData() method, 70, 129, 265, 317
getMinorVersion() method, 101, 304
getMoreResults() method, 76, 324
getNanos() method, 332
getNextException() method, 90, 336
getNextWarning() method, 92, 338
getNumericFunctions() method, 285
getObject() methods, 141, 142, 261, 317
getParameter() method, 95, 335
getPrecision() method, 320
getPrimaryKeys() method, 285–286
getProcedureColumns() method, 287–288
getProcedures() method, 286
getProcedureTerm() method, 288
getPropertyInfo() method, 101–102, 304
getQueryTimeout() method, 64–65, 324
getRead() method, 95, 335
getResultSet() method, 75–76, 323
getScale() method, 320
getSchemaName() method, 320
getSchemas() method, 288
getSchemaTerm() method, 288
getSearchStringEscape() method, 288
getShort() methods, 261, 315
getSQLKeywords() method, 289

getSQLState() method, 90, 92, 336
getString() method, 262
getStringFunctions() method, 288
getSystemFunctions() method, 289
getTableName() method, 320
getTablePrivileges() method, 290
getTables() method, 289
getTableTypes() method, 289–290
getTime() method, 262
getTimeDateFunctions() method, 290
getTimestamp() method, 262
getTransactionIsolation() method, 112, 265
getTransferSize() method, 94, 335
getTypeInfo() method, 290–291
getUpdateCount() method, 76, 323
getURL() method, 291
getUserName() method, 292
getVersionColumns() method, 292
getWarnings() method, 92, 265, 317, 324
getXXX() methods

for columns, 71–74
type conversions supported, 79–82
See also specific methods

graphical user interfaces. See GUIs (graphical user interfaces)
graphics. See BLOBs
GUIs (graphical user interfaces)

ISQL client applet, 169–171
Java database explorer, 221–227
JavaBank applet, 206–210

GWE Technologies, 343

H

handling results. See result handling
HTML (HyperText Markup Language)

in CGI approach, 27–29, 30–32
for ISQL client applet, 171–172
for JavaBank applet, 211
for JDBC Airlines applet, 177–178

I

IBM, 343
IDE (Integrated Development Environments), 5
IDS Software, 344
I-Kinetics, 343
ImageCanvas.java class, 192–194
Imaginary, 344
import statement, for JDBC classes, 46–47
IMPORTEDKEYCASCADE variable, 269
IMPORTEDKEYINITIALLYDEFERRED variable, 269
IMPORTEDKEYINITIALLYIMMEDIATE variable, 269
IMPORTEDKEYNOACTION variable, 269
IMPORTEDKEYNOTDEFERRABLE variable, 269
IMPORTEDKEYRESTRICT variable, 269
IMPORTEDKEYSETDEFAULT variable, 269

IMPORTEDKEYSETNULL variable, 269
independence of databases, 157
indexes, accessing columns by, 72–73
Information Builders, 344
Informix Software, 344
INSERT INTO (SQL verb)

JavaBank applet example, 220
overview, 14

integer types, mapping, 103–104
INTEGER variable, 333
Integrated Development Environments (IDE), 5
Interactive SQL. See ISQL entries
interfaces of JDBC

java.sql.CallableStatement, 39, 121–124, 259–263
java.sql.Connection, 38, 263–267
java.sql.DatabaseMetaData, 39, 129–139, 268–303
java.sql.Driver, 100–102, 303–304
java.sql.PreparedStatement, 39, 304–310
java.sql.ResultSet, 39, 310–318
java.sql.ResultSetMetaData, 39, 139–140, 318–322
java.sql.Statement, 38, 322–325
metadata interfaces, 129–140
overview, 38–39
See also metadata interfaces; specific interfaces

Internet
intranets versus, 25–26, 153–154
simultaneous users, 154–156

Intersoft Argentina, 344
Intersolv, 345
intranets

Internet versus, 25–26, 153–154
simultaneous users, 154–156

isAutoIncrement() method, 320
isCaseSensitive() method, 320
isCatalogAtStart() method, 292
isClosed() method, 53, 265
isCurrency() method, 320–321
isDefinitelyWritable() method, 321
isNullable() method, 321
isolation levels for transactions, 110–111, 112
ISQL client applet example, 169–199

GUI, 169–171
HTML file, 171–172
JDBC Airlines applet, 176–199
overview, 169
snapshot, 169–171
source code, 172–176
See also JDBC Airlines applet

ISQL client application example, 163–169
interactive SQL client, 165–169
overview, 163–164
simple Java ISQL, 164–165

ISQL tool for Java database explorer, 226–227
isReadOnly() method, 54–55, 265, 292–293, 321
isSearchable() method, 321
isSigned() method, 321
isWritable() method, 321–322

J

Java
100 versus non-100 158
compared to C and C++, 3–4
database integration issues, 25–26
future of, 6–8
overview, 3–5
stand-alone applications, 41–42
uses typical of, 5

Java applets. See applets
Java applications. See applications
Java Database Connectivity. See JDBC
Java database explorer example, 221–240

browsing database catalogs and contents, 224–226
database engine specifications and limitations, 223–224
features, 221
GUI, 221–227
interactive SQL tool, 226–227
login screen, 222–223
main window, 221–222
navigation graphical control, 223
source code, 227–240

Java Development Environments (JDE), 5
Java RMI (remote method invocation), 151
Java utilities on the CD-ROM, 358
Java wrapper classes, 32–33
JavaBank applet, 206–220

Account.java class, 211–215
controls, 207–210
Data Definition Language (DDL), 219–220
GUI, 206–210
HTML file, 211
NetBank.java class, 215–218
overview, 206–210
TimeT.java class, 218–219

javac statement, 47
JavaSoft, 339
java.sql.CallableStatement interface, 259–263

methods, 121–124, 260–263
overview, 39, 259
See also callable statements

java.sql.Connection interface, 263–267
methods, 52, 53–55, 111–112, 264–267
overview, 38, 263
variables, 263
See also database connection

java.sql.DatabaseMetaData interface, 129–139, 268–303
database limitation information, 133–134
database object information, 129, 134–139
“Driver not capable” message, 356
examples, 130–131, 134, 136–139
features supported, 131–133
methods, 129–139, 272–303
miscellaneous database information, 129–131
overview, 39, 129, 268
variables, 269–271

java.sql.DataTruncation class, 334–335

java.sql.Date class, 325–326
java.sql.Driver interface, 303–304

methods, 100–102, 303–304
overview, 303

java.sql.DriverManager class, 326–328
connection creation methods, 52
message logging methods, 50–51
methods for obtaining information, 99–100
methods, summary, 326–328
overview, 38, 326
See also driver manager

java.sql.DriverPropertyInfo class, 329
constructors, 329
members, 102
overview, 329
variables, 329

java.sql.PreparedStatement interface, 304–310
methods, 305–310
overview, 39, 304–305
See also prepared statements

java.sql.ResultSet interface, 310–318
methods, 310–318
overview, 39, 310
See also result handling

java.sql.ResultSetMetaData interface, 139–140, 318–322
column information, 139–140
column properties, 140
example, 140
methods, 139–140, 318–322
overview, 39, 318
variables, 318
See also result handling

java.sql.SQLException class, 335–336
constructors, 335–336
error management, 90–91
methods, 336

java.sql.SQLWarning class, 337–338
constructors, 337–338
methods, 338
warning management, 92–94

java.sql.Statement interface, 322–325
methods, 322–325
overview, 38, 322

java.sql.Time class, 330
java.sql.Timestamp class, 331–332
java.sql.Types class, 332–333
JDBC

alternatives, 27–33
characteristics, 20–21
drivers, 22–24, 49–54, 339–351
integration issues, 25–26
interfaces, 38–39
mechanisms, 37–38
overview, 9, 19
products, 339–351
products on the CD-ROM, 358
role of, 20–24
three-tier approach, 147–152
uses typical of, 39–42

See also JDBC API
JDBC Airlines applet, 176–199

Airplet.java class, 178–182
AirportChoice.java class, 185–186
Airport.java class, 182–185
ColumnLayout.java class, 186–188
Flight.java class, 188–189
FlightsPanel.java class, 189–191
FlightsVector.java class, 191–192
HTML file, 177–178
ImageCanvas.java class, 192–194
MapCanvas.java class, 194–196
MapInfo.java class, 197
MultilineLabel.java class, 197–199
overview, 176–177

JDBC API, 259–338
class java.sql.DataTruncation, 334–335
class java.sql.Date, 325–326
class java.sql.DriverManager, 38, 50–51, 52, 99–100, 326–328
class java.sql.DriverPropertyInfo, 102, 329
class java.sql.SQLException, 90–91, 335–336
class java.sql.SQLWarning, 92–94, 337–338
class java.sql.Time, 330
class java.sql.Timestamp, 331–332
class java.sql.Types, 332–333
interface java.sql.CallableStatement, 39, 121–124, 259–263
interface java.sql.Connection, 38, 52, 53–55, 111–112, 263–267
interface java.sql.DatabaseMetaData, 39, 129–139, 268–303
interface java.sql.Driver, 100–102, 303–304
interface java.sql.PreparedStatement, 39, 304–310
interface java.sql.ResultSet, 39, 310–318
interface java.sql.ResultSetMetaData, 39, 139–140, 318–322
interface java.sql.Statement, 38, 322–325
interfaces, 38–39
overview, 37–38

JDBC Driver API, 37
JDBC drivers, 49–54

for applets, 355
closing connections, 53–54
loading drivers, 49–50
methods, 50–51, 100–102
native drivers, 356
opening connections, 51–53
overview, 22–24
vendors, 339–351
See also Driver interface; driver manager

jdbcCompliant() method, 101, 304
JDE (Java Development Environments), 5
Joe, 152

K

Ken North Seminars, 345

L

labels of columns, 70–71
latency, 155
links

for further information, 353
for vendors, 339–351

loading JDBC drivers, 49–50
logging

example log stream, 57
JDBC messages, 50–51

logins, assigning, 155
LONGVARBINARY variable, 333
LONGVARCHAR variable, 333

M

MapCanvas.java class, 194–196
MapInfo.java class, 197
Marimba Bongo, 206, 221
Marimba, Inc., 350
mechanisms of JDBC, 37–38
message logging methods, 50–51
metadata interfaces, 129–139

database object information, 129
DatabaseMetaData interface, 39, 129–139, 268–303
ResultSetMetaData interface, 39, 139–140, 318–322
See also DatabaseMetaData interface; ResultSetMetaData interface
methods
CallableStatement interface, 121–124, 260–263
closing connections, 53–54
Connection interface, 52, 53–55, 111–112, 264–267
connection objects, setting and querying, 54–55
DatabaseMetaData interface, 129–139, 272–303
DataTruncation class, 334–335
Date class, 326
Driver interface, 100–102, 303–304
DriverManager class, 50–51, 52, 99–100, 326–328
message logging, 50–51
opening connections, 52–53
PreparedStatement interface, 305–310
ResultSet interface, 310–318
ResultSetMetaData interface, 139–140, 318–322
SQLException class, 336
SQLWarning class, 338
Statement interface, 322–325
Time class, 330
Timestamp class, 331–332
transaction management, 111–112
See also specific methods

movies. See BLOBs
MultilineLabel.java class, 197–199
multimedia. See BLOBs
multiple result types, 74–78, 120–121
multithreading, 145–146

N

NAME variable, 329
names

accessing columns by, 73–74
JDBC database naming syntax, 48–49

native drivers, 356
nativeSQL() method, 59–60, 265–266
Net drivers, JDBC, 24
Net Dynamics, 345
NetBank.java class, 215–218
newsgroups, Java development, 5
next() method, 69, 317–318
nonrepeatable reads, isolation level, 111, 112
NULL variable, 333
nullPlusNonNullIsNull() method, 293
nullsAreSortedAtEnd() method, 293
nullsAreSortedAtHigh() method, 293
nullsAreSortedAtLow() method, 293
nullsAreSortedAtStart() method, 293
numbers

mapping SQL types to Java, 103–104
scalar numeric functions, 107–108

NUMERIC variable, 333

O

O2 Technology, 345
Object Database Management Group, 350
Object Database Management Systems (ODBMS), 33, 159, 353
Object Design, 345
object persistency, 149–151
Object/Relational DBMS bridge, 33, 355, 356
ODBC, 16–18

components, 16–18
data source, 18
driver, 18
driver manager, 17–18
escape syntax, 106
interface, 16
Java native-protocol drivers versus, 42–43
overview, 16
user application, 17

ODBMS (Object Database Management Systems), 33, 159, 353
one-hundred percent versus non-100 percent Java, 158
Open Database Connectivity. See ODBC
Open Horizon, 346
opening database connections, 51–53
OpenLink Software, 346
Oracle Corp., 346
OTHER variable, 333
outer joins, escape syntax, 109

P

package java.sql. See JDBC API
Paradigm Plus, 8
Persistence Software, 346

persistified objects, 150–151
phantoms, isolation level, 111, 112
pictures. See BLOBs
Platinum Technology, 350

Paradigm Plus, 8
positioned deletes, 115–116
positioned updates, 115, 116–117
prepareCall() method, 120, 266
prepared statements

defined, 124
executing queries and retrieving results, 127–128
PreparedStatement interface, 39, 304–310
sending BLOBs, 128–129
sending parameters to, 125, 127
steps with JDBC, 125–126

PreparedStatement interface, 304–310
methods, 305–310
overview, 39, 304–305

prepareStatement() method, 126, 266
Presence Information Design, 346
println() method, 328
PRO-C, 347
PROCEDURECOLUMNIN variable, 270
PROCEDURECOLUMNINOUT variable, 270
PROCEDURECOLUMNOUT variable, 270
PROCEDURECOLUMNRESULT variable, 270
PROCEDURECOLUMNRETURN variable, 270
PROCEDURECOLUMNUNKNOWN variable, 269
PROCEDURENONULLS variable, 270
PROCEDURENORESULT variable, 270
PROCEDURENULLABLE variable, 270
PROCEDURERESULTUNKNOWN variable, 270
PROCEDURERETURNSRESULT variable, 270
products, JDBC, 339–351
products on the CD-ROM, 358
properties

database connection, 54–57
driver and driver manager, 50–51
jdbc.drivers system, 49–50
result set columns, 86, 140
for SQL statements, 63–64

proprietary JDBC database drivers, 22

Q

queries
data type conversions, 103–106
escape syntax, 106–109
executing, 60–62
sending SQL statements, 57–65
See also sending SQL statements; SQL

R

RAD (Rapid Application Development) tools, 5
REAL variable, 333

receiving BLOBs, 82–84, 202–205
Recital Corp., 347
registerDriver() method, 328
registerOutParameter() methods, 123, 262
relational databases

choosing, 159
overview, 9–10
standards, 12–18

remote method invocation (RMI), 151
example, 240–255
HTTP-proxy awareness, 244

Remote Procedure Calls (RPCs). See callable statements
replication, 154–155
REQUIRED variable, 329
result handling, 67–96

BLOBs, 82–84
canceling unwanted results, 78–79
closing result sets, 79
error and warning management, 90–96
example, 87–89
fetchable result types, 67
getting column number and label, 70–71
getting columns, 71–74
getting result sets, 68
getting rows, 69
ISQL client applet example, 169–199
ISQL client application example, 163–169
multiple result types, 74–78, 120–121
ResultSet interface, 39, 310–318
ResultSetMetaData interface, 39, 139–140, 318–322
scanning result sets, 69
SQL cursors, 86–87, 113–117
type conversion, 79–82

ResultSet interface, 310–318
methods, 310–318
overview, 39, 310
See also result handling
ResultSetMetaData interface, 139–140, 318–322

column information, 139–140
column properties, 140
example, 140
methods, 139–140, 318–322
overview, 39, 318
variables, 318
See also result handling

retrieving BLOBs, 82–84, 202–205
RMI (remote method invocation), 151

example, 240–255
HTTP-proxy awareness, 244

RogueWave Software, 347
rollback() method, 112, 266
rows

getting result sets, 69
ISQL client applet example, 169–199
ISQL client application example, 163–169
properties, 84–86

RPCs (Remote Procedure Calls). See callable statements

S

SAG (SQL Access Group), 15–16
Sanga Corp., 347
Santa Cruz Operation, 348
SAS Institute, 348
scalar functions, 107–108
security

firewalls, 156
JDBC and untrusted applets, 156
stand-alone applications, 155–156

SELECT (SQL verb), 14
sending SQL statements, 57–65

adjusting properties, 63–64
building statements, 58–59
closing statements, 62–63
data truncation, 63–64
data type conversions, 103–106
escape syntax, 106–109
example, 66
executing queries, 60–62
native SQL translation, 60–61
sending BLOBs, 63, 199–202
sending BLOBS using dynamic SQL, 128–129
time-outs, 64–65
transaction management, 110–113
See also SQL

servers, 355
setAsciiStream() method, 306
setAutoClose() method, 53, 112, 266–267
setAutoCommit() method, 112
setBigDecimal() method, 306
setBinaryStream() method, 128, 306
setBoolean() method, 306
setByte() method, 307
setBytes() method, 307
setCatalog() method, 55, 267
setCursorName() method, 114–115, 324
setDate() method, 307
setDouble() method, 307
setEscapeProcessing() method, 65, 324–325
setFloat() method, 307
setInt() method, 308
setLoginTimeout() method, 99–100, 328
setLogStream() method, 50, 51, 100, 328
setLong() method, 308
setMaxFieldSize() method

for result sets, 84
sending SQL statements, 63, 64, 325

setMaxRows() method, 85, 325
setNanos() method, 332
setNextException() method, 336
setNextWarning() method, 338
setNull() method, 308
setObject() methods, 122, 127, 141, 145, 308–309
setQueryTimeout() method, 64, 65, 325
setReadOnly() method, 54, 267
setShort() method, 309

setString() methods, 309, 315
setTime() methods, 309, 316
setTimestamp() methods, 309, 316
setTransactionIsolation() method, 111–112, 267
setUnicodeStream() methods, 310, 316–317
shared libraries, 356
simultaneous users, 154–156

latency, 155
problems possible, 154
replication, 154–155
security issues, 155–156

SMALLINT variable, 333
Solaris, 355
sounds. See BLOBs
source code on CD-ROM, 357
special characters, escape syntax, 109
SQL, 12–15

1989 standard, 12–13
basic verbs, 13–15
building statements, 58–59
callable statements, 119–124
closing statements, 62–63
cursors, 86–87, 113–117
data type conversions, 103–106
dynamic data access, 140–145
dynamic SQL, 124–129
escape syntax, 106–109
fetchable result types, 67
further information, 353
JDBC conformance, 20
metadata interfaces, 129–139
multithreading, 145–146
native SQL translation, 59–60
overview, 10, 12
ResultSetMetaData interface, 139–140
sending statements, 59–62
SQL-92 standard, 13

SQL Access Group (SAG), 15–16
SQLException() constructors, 335–336
SQLException class, 335–336

constructors, 335–336
error management, 90–91, 356
methods, 336

SQLWarning() constructors, 337–338
SQLWarning class, 337–338

constructors, 337–338
methods, 338
warning management, 92–94

stand-alone applications
overview, 41–42
security, 155–156
See also applications

standards, 12–18
further information, 353
ODBC, 16–18
SAG-X/Open CLI, 15–16
SQL, 12–15

Statement interface, 322–325
methods, 322–325

overview, 38, 322
stored procedures

callable statements, 119–124
DatabaseMetaData interface information, 139
escape syntax, 106–107
multiple result types, 120–121

storesLowerCaseIdentifiers() method, 293
storesLowerCaseQuotedIdentifiers() method, 294
storesMixedCaseIdentifiers() method, 294
storesMixedCaseQuotedIdentifiers() method, 294
storesUpperCaseIdentifiers() method, 293
storesUpperCaseQuotedIdentifiers() method, 294
StormCloud Development, 348
string functions, scalar, 108
string types, mapping, 103
subtrees of classes, typical, 46
supportsAlterTableWithAddColumn() method, 294
supportsAlterTableWithDropColumn() method, 294
supportsANSI92EntryLevelSQL() method, 294
supportsANSI92FullSQL() method, 295
supportsANSI92IntermediateSQL() method, 295
supportsCatalogsInDataManipulation() method, 295
supportsCatalogsInIndexDefinitions() method, 295
supportsCatalogsInPrivilegeDefinitions() method, 295–296
supportsCatalogsInProcedureCalls() method, 295
supportsCatalogsInTableDefinitions() method, 295
supportsColumnAliasing() method, 296
supportsConvert() method, 296
supportsCoreSQLGrammar() method, 296
supportsCorrelatedSubqueries() method, 296
supportsDataDefinitionAndDataManipulationTransactions() method, 296
supportsDataManipulationTransactionsOnly() method, 297
supportsDifferentTableCorrelationNames() method, 297
supportsExpressionsInOrderBy() method, 297
supportsExtendedSQLGrammar() method, 297
supportsFullOuterJoins() method, 297
supportsGroupBy() method, 297
supportsGroupByBeyondSelect() method, 298
supportsGroupByUnrelated() method, 297
supportsIntegrityEnhancementFacility() method, 298
supportsLikeEscapeClause() method, 298
supportsLimitedOuterJoins() method, 298
supportsMimimunSQLGrammar() method, 298
supportsMixedCaseIdentifiers() method, 298
supportsMixedCaseQuotedIdentifiers() method, 298
supportsMulitipleResultSets() method, 299
supportsMulitipleTransactions() method, 299
supportsNonNullableColumns() method, 299
supportsOpenCursorsAcrossCommit() method, 299
supportsOpenCursorsAcrossRollback() method, 299
supportsOpenStatementsAcrossCommit() method, 299
supportsOpenStatementsAcrossRollback() method, 300
supportsOrderByUnrelated() method, 300
supportsOuterJoins() method, 300
supportsPositionedDelete() method, 115–116, 300
supportsPositionedUpdate() method, 115, 116–117, 300
supportsSchemasInDataManipulation() method, 300
supportsSchemasInIndexDefinitions() method, 301

supportsSchemasInPrivilegeDefinitions() method, 301
supportsSchemasInProcedureCalls() method, 300
supportsSchemasInTableDefinitions() method, 301
supportsSelectForUpdate() method, 301
supportsStoredProcedures() method, 301
supportsSubqueriesInComparisons() method, 301
supportsSubqueriesInExists() method, 301
supportsSubqueriesInIns() method, 302
supportsSubqueriesInQuantifieds() method, 302
supportsTableCorrelationNames() method, 302
supportsTransactionIsolationLevel() method, 302
supportsTransactions() method, 302
supportsUnion() method, 302
supportsUnionAll() method, 302
Sybase

company information, 348
connecting to databases, 355

Symantec, 348–349
syntax

escape syntax, 106–109
JDBC database naming syntax, 48–49

system functions, scalar, 107

T

TABLEINDEXCLUSTERED variable, 270
TABLEINDEXHASHED variable, 270
TABLEINDEXOTHER variable, 271
TABLEINDEXSTATISTIC variable, 271
tables

creating for JavaBank applet, 219–220
DatabaseMetaData interface information, 138–139

technology, future of Java, 6
Thought, Inc., 349

three-tier approach, 147–152
CORBA software, 152
Java RMI (remote method invocation), 151
Joe, 152
object persistency, 149–151
overview, 147–149

three-tier client-server architecture, 11–12
Thunderstone, 349
Time() constructors, 330
time

escape syntax, 107–108
scalar functions, 108
Time class, 330

Time class, 330
TIME variable, 333
time-outs, SQL statements, 64–65
time-related types, mapping, 104
Timestamp() constructor, 331
Timestamp class, 331–332
timestamp escape syntax, 107–108
TIMESTAMP variable, 333
TimeT.java class, 218–219
TINYINT variable, 333

tools on the CD-ROM, 358
toString() method, 326, 330, 332
TP (Transaction Processing) monitor application, 6–7
transaction management, 110–113

examples, 113, 206–220
methods, 111–112
transaction isolation levels, 110–111, 112
transaction modes, 110
See also JavaBank applet

Transaction Processing (TP) monitor application, 6–7
TRANSACTION_NONE variable, 263
TRANSACTION_READ_COMMITTED variable, 263
TRANSACTION_READ_UNCOMMITTED variable, 263
TRANSACTION_REPEATABLE_READ variable, 263
TRANSACTION_SERIALIZABLE variable, 263
Trifox

company information, 351
Vortex Java Edition, 6–7

truncation. See data truncation
two-tier client-server architecture, 10–11
TYPENONULLS variable, 271
TYPENULLABLE variable, 271
TYPENULLABLEUNKNOWN variable, 271
TYPEPREDBASIC variable, 271
TYPEPREDCHAR variable, 271
TYPEPREDNONE variable, 271
types

conversions supported for getXXX() methods, 79–82
dynamically typed data insertion/update, 142–145
dynamically typed data retrieval, 141–142
fetchable result types, 67
managing multiple result types, 74–78
mapping Java types to SQL, 105–106
mapping SQL types to Java, 103–105
mapping tables, 104–106
Types class, 332–333
See also converting data types

Types class, 332–333
TYPESEARCHABLE variable, 271

U

unchained transaction mode, 110
Uniform Resource Locators. See URLs
untrusted applets

security issues, 156
traditional applications versus, 40–41
See also applets

UPDATE (SQL verb), 15
updates

dynamically typed data insertion/update, 142–145
positioned, 115, 116–117
URLs
acceptsURL() method, 100, 303
getURL() method, 291
JDBC database naming syntax, 48–49

Usenet newsgroups, Java development, 5

user applications. See applications
uses

of Java, 5
of JDBC, 39–42

usesLocalFilePerTable() method, 303
usesLocalFiles() method, 303
utilities on the CD-ROM, 358

V

VALUE variable, 329
valueOf() method, 326, 330, 332
VARBINARY variable, 333
VARCHAR variable, 333
variables

Connection interface, 263
DatabaseMetaData interface, 269–271
DriverPropertyInfo class, 329
ResultSetMetaData interface, 318
Types class, 332–333

VERSIONCOLUMNNOTPSEUDO variable, 271
VERSIONCOLUMNPSEUDO variable, 271
VERSIONCOLUMNUNKNOWN variable, 271
video. See BLOBs
Visigenic Software, 349
Vortex Java Edition, 6–7

W

warnings. See errors and warnings
wasNull() method, 86, 123, 263, 318
Web servers, 355
Web sites

for information, 353
vendors, 339–351

Weblogic, 349

X

X/Open, CLI standard, 15–16
XDB Systems, 349–350

Y, Z

YARD Software, 350

Table of Contents

